Provably Convergent Learned Inexact Descent Algorithm for Low-Dose CT Reconstruction

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED Journal of Scientific Computing Pub Date : 2024-08-20 DOI:10.1007/s10915-024-02638-7
Qingchao Zhang, Mehrdad Alvandipour, Wenjun Xia, Yi Zhang, Xiaojing Ye, Yunmei Chen
{"title":"Provably Convergent Learned Inexact Descent Algorithm for Low-Dose CT Reconstruction","authors":"Qingchao Zhang, Mehrdad Alvandipour, Wenjun Xia, Yi Zhang, Xiaojing Ye, Yunmei Chen","doi":"10.1007/s10915-024-02638-7","DOIUrl":null,"url":null,"abstract":"<p>We propose an Efficient Inexact Learned Descent-type Algorithm (ELDA) for a class of nonconvex and nonsmooth variational models, where the regularization consists of a sparsity enhancing term and non-local smoothing term for learned features. The ELDA improves the performance of the LDA in Chen et al. (SIAM J Imag Sci 14(4), 1532–1564, 2021) by reducing the number of the subproblems from two to one for most of the iterations and allowing inexact gradient computation. We generate a deep neural network, whose architecture follows the algorithm exactly for low-dose CT (LDCT) reconstruction. The network inherits the convergence behavior of the algorithm and is interpretable as a solution of the varational model and parameter efficient. The experimental results from the ablation study and comparisons with several state-of-the-art deep learning approaches indicate the promising performance of the proposed method in solution accuracy and parameter efficiency.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"16 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02638-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an Efficient Inexact Learned Descent-type Algorithm (ELDA) for a class of nonconvex and nonsmooth variational models, where the regularization consists of a sparsity enhancing term and non-local smoothing term for learned features. The ELDA improves the performance of the LDA in Chen et al. (SIAM J Imag Sci 14(4), 1532–1564, 2021) by reducing the number of the subproblems from two to one for most of the iterations and allowing inexact gradient computation. We generate a deep neural network, whose architecture follows the algorithm exactly for low-dose CT (LDCT) reconstruction. The network inherits the convergence behavior of the algorithm and is interpretable as a solution of the varational model and parameter efficient. The experimental results from the ablation study and comparisons with several state-of-the-art deep learning approaches indicate the promising performance of the proposed method in solution accuracy and parameter efficiency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低剂量 CT 重建的可证明收敛学习型非精确下降算法
我们针对一类非凸和非光滑的变分模型提出了一种高效的非精确学习下降算法(ELDA),其中正则化包括对学习特征的稀疏性增强项和非局部平滑项。ELDA 改善了 Chen 等人(SIAM J Imag Sci 14(4), 1532-1564, 2021)中 LDA 的性能,将大部分迭代的子问题数量从两个减少到一个,并允许不精确梯度计算。我们生成了一个深度神经网络,其架构与低剂量 CT(LDCT)重建算法完全一致。该网络继承了算法的收敛行为,可解释为变异模型和参数有效的解决方案。消融研究的实验结果以及与几种最先进的深度学习方法的比较表明,所提出的方法在解的准确性和参数效率方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
期刊最新文献
Nonlinear Hierarchical Matrix Factorization-Based Tensor Ring Approximation for Multi-dimensional Image Recovery Fully Discrete Finite Difference Schemes for the Fractional Korteweg-de Vries Equation Curvature-Dependent Elastic Bending Total Variation Model for Image Inpainting with the SAV Algorithm The Optimal Weights of Non-local Means for Variance Stabilized Noise Removal An HDG and CG Method for the Indefinite Time-Harmonic Maxwell’s Equations Under Minimal Regularity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1