A Method for Predicting Ultradian Body Temperature Rhythms in Small Animals

IF 0.9 4区 医学 Q4 MEDICINE, RESEARCH & EXPERIMENTAL Bulletin of Experimental Biology and Medicine Pub Date : 2024-09-12 DOI:10.1007/s10517-024-06216-7
M. E. Diatroptov, M. A. Diatroptova
{"title":"A Method for Predicting Ultradian Body Temperature Rhythms in Small Animals","authors":"M. E. Diatroptov, M. A. Diatroptova","doi":"10.1007/s10517-024-06216-7","DOIUrl":null,"url":null,"abstract":"<p>It has been found that the intraday dynamics of body temperature in small mammal and bird species on the adjacent day are similar. Therefore, by focusing on the body temperature dynamics of the previous day, it is possible to predict with a high degree of accuracy the periods of increase and decrease in body temperature for the current day. This phenomenon was observed when animals were kept under natural illumination and under artificial illumination when the phase of the intrinsic circadian rhythm shifted by 1-2 h every day. When analyzing this phenomenon in birds, it has been shown that the best match for body temperature dynamics occurs when comparing adjacent days based on sidereal days (a period of 23 h and 56 min). Over time, after several days, the daily patterns of body temperature fluctuation take on a completely different form and frequency. These facts suggest a connection between ultradian rhythms and the rotation of the Earth around its axis, and consequently, the position of animals on the surface of the planet relative to space objects.</p>","PeriodicalId":9331,"journal":{"name":"Bulletin of Experimental Biology and Medicine","volume":"65 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10517-024-06216-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

It has been found that the intraday dynamics of body temperature in small mammal and bird species on the adjacent day are similar. Therefore, by focusing on the body temperature dynamics of the previous day, it is possible to predict with a high degree of accuracy the periods of increase and decrease in body temperature for the current day. This phenomenon was observed when animals were kept under natural illumination and under artificial illumination when the phase of the intrinsic circadian rhythm shifted by 1-2 h every day. When analyzing this phenomenon in birds, it has been shown that the best match for body temperature dynamics occurs when comparing adjacent days based on sidereal days (a period of 23 h and 56 min). Over time, after several days, the daily patterns of body temperature fluctuation take on a completely different form and frequency. These facts suggest a connection between ultradian rhythms and the rotation of the Earth around its axis, and consequently, the position of animals on the surface of the planet relative to space objects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测小动物昼夜体温节律的方法
研究发现,小型哺乳动物和鸟类的体温在相邻一天内的动态变化是相似的。因此,通过关注前一天的体温动态,可以非常准确地预测当天的体温上升期和下降期。在自然光照和人工光照下饲养动物时,每天内在昼夜节律的相位都会发生 1-2 小时的变化,从而观察到这种现象。在分析鸟类的这一现象时,研究表明,在恒星日(23 小时 56 分钟)的基础上比较相邻天数时,体温动态最匹配。随着时间的推移,经过几天之后,体温的日波动模式就会呈现出完全不同的形式和频率。这些事实表明,超昼夜节律与地球绕地轴的自转有关,因此也与动物在地球表面相对于太空物体的位置有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of Experimental Biology and Medicine
Bulletin of Experimental Biology and Medicine 医学-医学:研究与实验
CiteScore
1.50
自引率
14.30%
发文量
265
审稿时长
2 months
期刊介绍: Bulletin of Experimental Biology and Medicine presents original peer reviewed research papers and brief reports on priority new research results in physiology, biochemistry, biophysics, pharmacology, immunology, microbiology, genetics, oncology, etc. Novel trends in science are covered in new sections of the journal - Biogerontology and Human Ecology - that first appeared in 2005. World scientific interest in stem cells prompted inclusion into Bulletin of Experimental Biology and Medicine a quarterly scientific journal Cell Technologies in Biology and Medicine (a new Russian Academy of Medical Sciences publication since 2005). It publishes only original papers from the leading research institutions on molecular biology of stem and progenitor cells, stem cell as the basis of gene therapy, molecular language of cell-to-cell communication, cytokines, chemokines, growth and other factors, pilot projects on clinical use of stem and progenitor cells. The Russian Volume Year is published in English from April.
期刊最新文献
Ventral Root Boundary Cap Cells of Rat Spinal Cord Contain Connexin-43. Experimental Study of Products Based on Biocompatible Polymer Material from Methacrylic Oligomers as a Potential Barrier for Preventing Adhesions in Cardiac Surgery. Expression of Immunohistochemical Markers in the Walls of Pelvic Varicose Veins in Women. Mesenchymal Properties of Glioma Cell Lines. Morphological and Molecular-Biological Features of Lewis Lung Carcinoma Progression in Mice with Different Resistance to Hypoxia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1