Linearly Implicit Schemes Preserve the Maximum Bound Principle and Energy Dissipation for the Time-fractional Allen–Cahn Equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-11 DOI:10.1007/s10915-024-02667-2
Huiling Jiang, Dongdong Hu, Haorong Huang, Hongliang Liu
{"title":"Linearly Implicit Schemes Preserve the Maximum Bound Principle and Energy Dissipation for the Time-fractional Allen–Cahn Equation","authors":"Huiling Jiang, Dongdong Hu, Haorong Huang, Hongliang Liu","doi":"10.1007/s10915-024-02667-2","DOIUrl":null,"url":null,"abstract":"<p>This paper presents two highly efficient numerical schemes for the time-fractional Allen–Cahn equation that preserve the maximum bound principle and energy dissipation in discrete settings. To this end, we utilize a generalized auxiliary variable approach proposed in a recent paper (Ju et al. in SIAM J Numer Anal 60:1905–1931, 2022) to reformulate the governing equation into an equivalent system that follows a modified energy functional and the maximum bound principle at each continuous level. By combining the L1-type formula of the Riemann–Liouville fractional derivative with the Crank–Nicolson method, we construct two novel linearly implicit schemes by introducing the first- and second-order stabilized terms, respectively. These schemes are proved to be energy stable and maximum bound principle preserving on nonuniform time meshes with the help of the discrete orthogonal convolution technique. In addition, we obtain the unique solvability of the proposed schemes without any time-space step ratio. Finally, we report extensive numerical results to verify the correctness of the theoretical analysis and the performance of the proposed schemes in long-time simulations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02667-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents two highly efficient numerical schemes for the time-fractional Allen–Cahn equation that preserve the maximum bound principle and energy dissipation in discrete settings. To this end, we utilize a generalized auxiliary variable approach proposed in a recent paper (Ju et al. in SIAM J Numer Anal 60:1905–1931, 2022) to reformulate the governing equation into an equivalent system that follows a modified energy functional and the maximum bound principle at each continuous level. By combining the L1-type formula of the Riemann–Liouville fractional derivative with the Crank–Nicolson method, we construct two novel linearly implicit schemes by introducing the first- and second-order stabilized terms, respectively. These schemes are proved to be energy stable and maximum bound principle preserving on nonuniform time meshes with the help of the discrete orthogonal convolution technique. In addition, we obtain the unique solvability of the proposed schemes without any time-space step ratio. Finally, we report extensive numerical results to verify the correctness of the theoretical analysis and the performance of the proposed schemes in long-time simulations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性隐式方案保留时间分数艾伦-卡恩方程的最大边界原则和能量消耗
本文针对时间分式 Allen-Cahn 方程提出了两种高效数值方案,它们在离散设置中保留了最大约束原则和能量耗散。为此,我们利用最近一篇论文(Ju et al. in SIAM J Numer Anal 60:1905-1931, 2022)中提出的广义辅助变量方法,将治理方程重新表述为一个等价系统,该系统在每个连续级遵循修正的能量函数和最大约束原理。通过将黎曼-刘维尔分数导数的 L1 型公式与 Crank-Nicolson 方法相结合,我们分别引入了一阶和二阶稳定项,构建了两个新的线性隐式方案。在离散正交卷积技术的帮助下,这些方案在非均匀时间网格上被证明是能量稳定和最大边界原则保留的。此外,我们还获得了所提方案在没有任何时空步长比的情况下的唯一可解性。最后,我们报告了大量数值结果,以验证理论分析的正确性和所提方案在长时间模拟中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1