Corn Husk Derived Activated Carbon/Siloxene Composite Electrodes based Symmetric Supercapacitor with High Energy Density and Wide Temperature Tolerance
Kiran Kumar Reddy Reddygunta, Prof. Lidija Šiller, Dr. Aruna Ivaturi
{"title":"Corn Husk Derived Activated Carbon/Siloxene Composite Electrodes based Symmetric Supercapacitor with High Energy Density and Wide Temperature Tolerance","authors":"Kiran Kumar Reddy Reddygunta, Prof. Lidija Šiller, Dr. Aruna Ivaturi","doi":"10.1002/celc.202400230","DOIUrl":null,"url":null,"abstract":"<p>In the present work, novel composite material comprising of corn husk derived activated carbon and siloxene nanosheets have been explored as new class of multicomponent electrode material for fabricating high energy density supercapacitors with wide temperature tolerance. The activated carbon obtained from corn husk (ACH–900) with high surface area and pore volume acts as an ideal framework for hosting siloxene nanosheets (S) that allows the overall siloxene–corn husk derived activated carbon (ACH–900/S) composite to deliver excellent electrochemical performance. The as-prepared ACH–900/S composite electrode exhibited a high specific capacitance of 415 F g<sup>−1</sup> at 0.25 A g<sup>−1</sup> and retained 73.4 % of its initial capacitance even at a high current density of 30 A g<sup>−1</sup> in 1 M Na<sub>2</sub>SO<sub>4</sub> electrolyte. In addition, the symmetric supercapacitor assembled with “acetonitrile/water-in-salt (AWIS)” electrolyte exhibited an energy density of 57.2 W h kg<sup>−1</sup> at 338 W kg<sup>−1</sup> with a cyclic stability of 92.8 % after 10000 cycles at 5 A g<sup>−1</sup> current density. Besides, the fabricated ACH–900/S supercapacitor can operate over wide temperature range from 0 to 100 °C. This work opens up new frontiers to develop low-cost safe supercapacitors with wide temperature tolerance and excellent electrochemical performance.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 19","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400230","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400230","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, novel composite material comprising of corn husk derived activated carbon and siloxene nanosheets have been explored as new class of multicomponent electrode material for fabricating high energy density supercapacitors with wide temperature tolerance. The activated carbon obtained from corn husk (ACH–900) with high surface area and pore volume acts as an ideal framework for hosting siloxene nanosheets (S) that allows the overall siloxene–corn husk derived activated carbon (ACH–900/S) composite to deliver excellent electrochemical performance. The as-prepared ACH–900/S composite electrode exhibited a high specific capacitance of 415 F g−1 at 0.25 A g−1 and retained 73.4 % of its initial capacitance even at a high current density of 30 A g−1 in 1 M Na2SO4 electrolyte. In addition, the symmetric supercapacitor assembled with “acetonitrile/water-in-salt (AWIS)” electrolyte exhibited an energy density of 57.2 W h kg−1 at 338 W kg−1 with a cyclic stability of 92.8 % after 10000 cycles at 5 A g−1 current density. Besides, the fabricated ACH–900/S supercapacitor can operate over wide temperature range from 0 to 100 °C. This work opens up new frontiers to develop low-cost safe supercapacitors with wide temperature tolerance and excellent electrochemical performance.
在本研究中,我们探索了由玉米皮衍生活性碳和硅氧烷纳米片组成的新型复合材料,将其作为新型多组分电极材料,用于制造具有宽温度耐受性的高能量密度超级电容器。从玉米皮中提取的活性炭(ACH-900)具有较高的比表面积和孔隙率,可作为承载硅氧烷纳米片(S)的理想框架,使硅氧烷-玉米皮活性炭(ACH-900/S)复合材料整体具有优异的电化学性能。制备的 ACH-900/S 复合电极在 0.25 A g-1 的条件下具有 415 F g-1 的高比电容,即使在 1 M Na2SO4 电解液中的电流密度高达 30 A g-1 时,也能保持 73.4 % 的初始电容。此外,用 "乙腈/盐包水(AWIS)"电解液组装的对称超级电容器在 338 W kg-1 的条件下,能量密度达到 57.2 W h kg-1,在 5 A g-1 电流密度下循环 10000 次后,循环稳定性达到 92.8%。此外,制备的 ACH-900/S 超级电容器可在 0 至 100 °C 的宽温度范围内工作。这项工作为开发具有宽温度耐受性和优异电化学性能的低成本安全超级电容器开辟了新的领域。
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.