Detection of Micromolar Glucose Levels in Human Sweat Using an Organic Transistor-Based Enzymatic Sensor

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY ChemElectroChem Pub Date : 2024-09-06 DOI:10.1002/celc.202400292
Dr. Yui Sasaki, Kohei Ohshiro, Miyuki Kato, Dr. Daijiro Haba, Prof. Dr. Gojiro Nakagami, Prof. Dr. Tsuyoshi Minami
{"title":"Detection of Micromolar Glucose Levels in Human Sweat Using an Organic Transistor-Based Enzymatic Sensor","authors":"Dr. Yui Sasaki,&nbsp;Kohei Ohshiro,&nbsp;Miyuki Kato,&nbsp;Dr. Daijiro Haba,&nbsp;Prof. Dr. Gojiro Nakagami,&nbsp;Prof. Dr. Tsuyoshi Minami","doi":"10.1002/celc.202400292","DOIUrl":null,"url":null,"abstract":"<p>Sweat glucose serves as a significant biomarker of health, necessitating accurate determination at the micromolar level for noninvasive monitoring. To address this need, we design an organic field-effect transistor (OFET)-based enzymatic sensor to quantify glucose levels in human sweat. The extended-gate structure of the OFET device ensures stable analyte detection in human sweat owing to its isolated configuration. The extended-gate-type OFET has been functionalized with glucose oxidase and an <i>N</i>-ethylphenazonium-based mediator-attached monolayer. This configuration facilitates electron relay, enabling accurate and reproducible glucose detection. Leveraging the amplification ability of the OFET, the enzymatic sensor exhibited highly sensitive glucose detection, achieving a low limit of detection (2.9 μM) suitable for sweat analysis requirements. In addition, the sensor exhibited high discriminability in detecting glucose amidst interferents commonly found in sweat, indicating its practical feasibility for sweat analysis. Validation of glucose recovery rates (95–105 %) in human sweat, without pretreatment, was performed using established instrumental analysis methods.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 19","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400292","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400292","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Sweat glucose serves as a significant biomarker of health, necessitating accurate determination at the micromolar level for noninvasive monitoring. To address this need, we design an organic field-effect transistor (OFET)-based enzymatic sensor to quantify glucose levels in human sweat. The extended-gate structure of the OFET device ensures stable analyte detection in human sweat owing to its isolated configuration. The extended-gate-type OFET has been functionalized with glucose oxidase and an N-ethylphenazonium-based mediator-attached monolayer. This configuration facilitates electron relay, enabling accurate and reproducible glucose detection. Leveraging the amplification ability of the OFET, the enzymatic sensor exhibited highly sensitive glucose detection, achieving a low limit of detection (2.9 μM) suitable for sweat analysis requirements. In addition, the sensor exhibited high discriminability in detecting glucose amidst interferents commonly found in sweat, indicating its practical feasibility for sweat analysis. Validation of glucose recovery rates (95–105 %) in human sweat, without pretreatment, was performed using established instrumental analysis methods.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于有机晶体管的酶传感器检测人体汗液中的微摩尔葡萄糖水平
汗液葡萄糖是一种重要的健康生物标志物,需要在微摩尔水平上进行精确测定,以便进行无创监测。为了满足这一需求,我们设计了一种基于有机场效应晶体管(OFET)的酶传感器来量化人体汗液中的葡萄糖水平。由于其隔离配置,OFET 器件的扩展栅结构可确保在人体汗液中进行稳定的分析检测。这种扩展栅极型 OFET 已被葡萄糖氧化酶和 N-ethylphenazonium 介质附着单层功能化。这种结构有利于电子中继,从而实现准确、可重复的葡萄糖检测。利用 OFET 的放大能力,酶传感器实现了高灵敏度的葡萄糖检测,达到了适合汗液分析要求的低检测限(2.9 μM)。此外,该传感器在检测汗液中常见的干扰物时表现出很高的鉴别能力,这表明其在汗液分析中的实用可行性。在未进行预处理的情况下,利用现有的仪器分析方法对人体汗液中的葡萄糖回收率(95-105%)进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
期刊最新文献
Front Cover: Electrocatalytic Performance and Kinetic Behavior of Anion-Intercalated Borate-Based NiFe LDH in Alkaline OER (ChemElectroChem 22/2024) Cover Feature: Cost-Effective Solutions for Lithium-Ion Battery Manufacturing: Comparative Analysis of Olefine and Rubber-Based Alternative Binders for High-Energy Ni-Rich NCM Cathodes (ChemElectroChem 21/2024) Front Cover: High-performance Porous Electrodes for Flow Batteries: Improvements of Specific Surface Areas and Reaction Kinetics (ChemElectroChem 21/2024) Lithium Doping Enhances the Aqueous Zinc Ion Storage Performance of V3O7 ⋅ H2O Nanorods Annihilation Electrochemiluminescence Triggered by Bipolar Electrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1