On the Stability of an Atomically-Dispersed Fe−N−C ORR Catalyst: An In Situ XAS Study in a PEMFC

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY ChemElectroChem Pub Date : 2024-08-26 DOI:10.1002/celc.202400228
Davide Menga, Yan-Sheng Li, Ana Marija Damjanović, Olivier Proux, Friedrich E. Wagner, Tim-Patrick Fellinger, Hubert A. Gasteiger, Michele Piana
{"title":"On the Stability of an Atomically-Dispersed Fe−N−C ORR Catalyst: An In Situ XAS Study in a PEMFC","authors":"Davide Menga,&nbsp;Yan-Sheng Li,&nbsp;Ana Marija Damjanović,&nbsp;Olivier Proux,&nbsp;Friedrich E. Wagner,&nbsp;Tim-Patrick Fellinger,&nbsp;Hubert A. Gasteiger,&nbsp;Michele Piana","doi":"10.1002/celc.202400228","DOIUrl":null,"url":null,"abstract":"<p>The stability of Fe−N−C oxygen reduction reaction (ORR) electrocatalysts has been considered a primary challenge for their practical application in proton exchange membrane fuel cells (PEMFCs). While several studies have attempted to reveal the possible degradation mechanism of Fe−N−C ORR catalysts, there are few research results reporting on their stability as well as the possible Fe species formed under different voltages in real PEMFC operation. In this work, we employ <i>in-situ</i> X-ray absorption near-edge structure (XANES) to monitor the active-site degradation byproducts of an atomically dispersed Fe−N−C ORR catalyst under a H<sub>2</sub>/O<sub>2</sub>-operating PEMFC at 90 % relative humidity and 80 °C. For this, stability tests were carried out at two constant cell voltages, namely 0.4 and at 0.8 V. Even though the ORR activity of the Fe−N−C catalyst decreased significantly and was almost identical at the end of the tests for the two voltages employed, the analysis of the XANES recorded under H<sub>2</sub>/N<sub>2</sub> configuration at 0.6 and 0.9 V within the stability test suggests that two different degradation mechanisms occur. They are demetalation of iron cations followed by their precipitation into Fe oxides upon operation at 0.8 V, versus a chemical carbon oxidation close to the active sites, likely triggered by reactive oxygen species (ROS) originated from the H<sub>2</sub>O<sub>2</sub> formation, during the operation at 0.4 V.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400228","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400228","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The stability of Fe−N−C oxygen reduction reaction (ORR) electrocatalysts has been considered a primary challenge for their practical application in proton exchange membrane fuel cells (PEMFCs). While several studies have attempted to reveal the possible degradation mechanism of Fe−N−C ORR catalysts, there are few research results reporting on their stability as well as the possible Fe species formed under different voltages in real PEMFC operation. In this work, we employ in-situ X-ray absorption near-edge structure (XANES) to monitor the active-site degradation byproducts of an atomically dispersed Fe−N−C ORR catalyst under a H2/O2-operating PEMFC at 90 % relative humidity and 80 °C. For this, stability tests were carried out at two constant cell voltages, namely 0.4 and at 0.8 V. Even though the ORR activity of the Fe−N−C catalyst decreased significantly and was almost identical at the end of the tests for the two voltages employed, the analysis of the XANES recorded under H2/N2 configuration at 0.6 and 0.9 V within the stability test suggests that two different degradation mechanisms occur. They are demetalation of iron cations followed by their precipitation into Fe oxides upon operation at 0.8 V, versus a chemical carbon oxidation close to the active sites, likely triggered by reactive oxygen species (ROS) originated from the H2O2 formation, during the operation at 0.4 V.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原子分散的 Fe-N-C ORR 催化剂的稳定性:PEMFC 中的原位 XAS 研究
质子交换膜燃料电池中 Fe-N-C 催化剂的原位 XAS 分析表明了两种不同的降解机制:在 0.8 V 电压下运行时,Fe 阳离子脱金属,随后沉淀为 Fe 氧化物;在 0.4 V 电压下运行时,H2O2 形成的活性氧 (ROS) 触发活性位点附近的化学碳氧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
期刊最新文献
Front Cover: Electrocatalytic Performance and Kinetic Behavior of Anion-Intercalated Borate-Based NiFe LDH in Alkaline OER (ChemElectroChem 22/2024) Cover Feature: Cost-Effective Solutions for Lithium-Ion Battery Manufacturing: Comparative Analysis of Olefine and Rubber-Based Alternative Binders for High-Energy Ni-Rich NCM Cathodes (ChemElectroChem 21/2024) Front Cover: High-performance Porous Electrodes for Flow Batteries: Improvements of Specific Surface Areas and Reaction Kinetics (ChemElectroChem 21/2024) Lithium Doping Enhances the Aqueous Zinc Ion Storage Performance of V3O7 ⋅ H2O Nanorods Annihilation Electrochemiluminescence Triggered by Bipolar Electrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1