Ecg signal watermarking using QR decomposition

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Physical and Engineering Sciences in Medicine Pub Date : 2024-09-12 DOI:10.1007/s13246-024-01480-3
Yashar Naderahmadian
{"title":"Ecg signal watermarking using QR decomposition","authors":"Yashar Naderahmadian","doi":"10.1007/s13246-024-01480-3","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a novel watermarking technique for electrocardiogram (ECG) signals. Watermarking embeds critical information within the ECG signal, enabling data origin authentication, ownership verification, and ensuring the integrity of research data in domains like telemedicine, medical databases, insurance, and legal proceedings. Drawing inspiration from image watermarking, the proposed method transforms the ECG signal into a two-dimensional format for QR decomposition. The watermark is then embedded within the first row of the resulting R matrix. Three implementation scenarios are proposed: one in the spatial domain and two in the transform domain utilizing discrete wavelet transform (DWT) for improved watermark imperceptibility. Evaluation on real ECG signals from MIT-BIH Arrhythmia database and comparison to existing methods demonstrate that the proposed method achieves: (1) higher Peak Signal-to-Noise Ratio (PSNR) indicating minimal alterations to the watermarked signal, (2) lower bit error rates (BER) in robustness tests against external modifications such as AWGN noise (additive white Gaussian noise), line noise and down-sampling, and (3) lower computational complexity. These findings emphasize the effectiveness of the proposed QR decomposition-based watermarking method, achieving a balance between robustness and imperceptibility. The proposed approach has the potential to improve the security and authenticity of ECG data in healthcare and legal contexts, while its lower computational complexity enhances its practical applicability.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":"23 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01480-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel watermarking technique for electrocardiogram (ECG) signals. Watermarking embeds critical information within the ECG signal, enabling data origin authentication, ownership verification, and ensuring the integrity of research data in domains like telemedicine, medical databases, insurance, and legal proceedings. Drawing inspiration from image watermarking, the proposed method transforms the ECG signal into a two-dimensional format for QR decomposition. The watermark is then embedded within the first row of the resulting R matrix. Three implementation scenarios are proposed: one in the spatial domain and two in the transform domain utilizing discrete wavelet transform (DWT) for improved watermark imperceptibility. Evaluation on real ECG signals from MIT-BIH Arrhythmia database and comparison to existing methods demonstrate that the proposed method achieves: (1) higher Peak Signal-to-Noise Ratio (PSNR) indicating minimal alterations to the watermarked signal, (2) lower bit error rates (BER) in robustness tests against external modifications such as AWGN noise (additive white Gaussian noise), line noise and down-sampling, and (3) lower computational complexity. These findings emphasize the effectiveness of the proposed QR decomposition-based watermarking method, achieving a balance between robustness and imperceptibility. The proposed approach has the potential to improve the security and authenticity of ECG data in healthcare and legal contexts, while its lower computational complexity enhances its practical applicability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 QR 分解技术对心电图信号进行水印处理
本研究介绍了一种新型心电图(ECG)信号水印技术。水印技术将关键信息嵌入心电信号,从而实现数据来源认证、所有权验证,并确保远程医疗、医疗数据库、保险和法律诉讼等领域研究数据的完整性。受图像水印技术的启发,所提出的方法将心电图信号转换为二维格式,进行 QR 分解。然后将水印嵌入所得到的 R 矩阵的第一行。本文提出了三种实施方案:一种在空间域,另两种在变换域,利用离散小波变换(DWT)提高水印的不可感知性。通过对 MIT-BIH 心律失常数据库中的真实心电信号进行评估,并与现有方法进行比较,结果表明:(1) 拟议方法实现了更高的峰值信噪比 (PSNR),表明对水印信号的改动最小;(2) 在针对 AWGN 噪声(加性白高斯噪声)、线路噪声和下采样等外部改动的鲁棒性测试中实现了更低的误码率 (BER);(3) 降低了计算复杂度。这些发现强调了所提出的基于 QR 分解的水印方法的有效性,实现了鲁棒性和不可感知性之间的平衡。所提出的方法有望在医疗保健和法律领域提高心电图数据的安全性和真实性,同时其较低的计算复杂度也增强了其实际应用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
期刊最新文献
Use of a virtual phantom to assess the capability of a treatment planning system to perform magnetic resonance image distortion correction. [113mIn]In-RM2: a high potential agent for SPECT imaging of GRPR-expressing tumors. Enhancing percutaneous coronary intervention using TriVOCTNet: a multi-task deep learning model for comprehensive intravascular optical coherence tomography analysis. Memory enhancement by transcranial radiofrequency wave treatment occurs without appreciably increasing brain temperature. SchizoLMNet: a modified lightweight MobileNetV2- architecture for automated schizophrenia detection using EEG-derived spectrograms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1