Fiber-Integrated van der Waals Quantum Sensor with an Optimal Cavity Interface

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Optical Materials Pub Date : 2024-08-29 DOI:10.1002/adom.202401987
Jong Sung Moon, Benjamin Whitefield, Lesley Spencer, Mehran Kianinia, Madeline Hennessey, Milos Toth, Woong Bae Jeon, Je-Hyung Kim, Igor Aharonovich
{"title":"Fiber-Integrated van der Waals Quantum Sensor with an Optimal Cavity Interface","authors":"Jong Sung Moon,&nbsp;Benjamin Whitefield,&nbsp;Lesley Spencer,&nbsp;Mehran Kianinia,&nbsp;Madeline Hennessey,&nbsp;Milos Toth,&nbsp;Woong Bae Jeon,&nbsp;Je-Hyung Kim,&nbsp;Igor Aharonovich","doi":"10.1002/adom.202401987","DOIUrl":null,"url":null,"abstract":"<p>Integrating quantum materials with fiber optics adds advanced functionalities to a variety of applications, and introduces fiber-based quantum devices such as remote sensors capable of probing multiple physical parameters. However, achieving optimal integration between quantum materials and fibers is challenging, particularly due to difficulties in fabrication of quantum elements with suitable dimensions and an efficient photonic interface to a commercial optical fiber. Here a new modality for a fiber-integrated van der Waals quantum sensor is demonstrated. A hole-based circular Bragg grating cavity from hexagonal boron nitride (hBN) is designed and fabricated, engineer optically active spin defects within the cavity, and integrate the cavity with an optical fiber using a deterministic pattern transfer technique. The fiber-integrated hBN cavity enables efficient excitation and collection of optical signals from spin defects in hBN, thereby enabling all-fiber integrated quantum sensors. Moreover, remote sensing of a ferromagnetic material and of arbitrary magnetic fields is demonstrated. All in all, the hybrid fiber-based quantum sensing platform may pave the way to a new generation of robust, remote, multi-functional quantum sensors.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 32","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202401987","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401987","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating quantum materials with fiber optics adds advanced functionalities to a variety of applications, and introduces fiber-based quantum devices such as remote sensors capable of probing multiple physical parameters. However, achieving optimal integration between quantum materials and fibers is challenging, particularly due to difficulties in fabrication of quantum elements with suitable dimensions and an efficient photonic interface to a commercial optical fiber. Here a new modality for a fiber-integrated van der Waals quantum sensor is demonstrated. A hole-based circular Bragg grating cavity from hexagonal boron nitride (hBN) is designed and fabricated, engineer optically active spin defects within the cavity, and integrate the cavity with an optical fiber using a deterministic pattern transfer technique. The fiber-integrated hBN cavity enables efficient excitation and collection of optical signals from spin defects in hBN, thereby enabling all-fiber integrated quantum sensors. Moreover, remote sensing of a ferromagnetic material and of arbitrary magnetic fields is demonstrated. All in all, the hybrid fiber-based quantum sensing platform may pave the way to a new generation of robust, remote, multi-functional quantum sensors.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有最佳腔体界面的光纤集成范德华量子传感器
量子材料与光纤的集成为各种应用增添了先进的功能,并引入了基于光纤的量子设备,如能够探测多种物理参数的远程传感器。然而,要实现量子材料与光纤的最佳集成却极具挑战性,特别是在制造具有合适尺寸的量子元件以及与商用光纤的高效光子接口方面存在困难。这里展示了一种光纤集成范德华量子传感器的新模式。我们设计并制造了一个由六方氮化硼(hBN)制成的基于孔的环形布拉格光栅腔,在腔内设计了光学活性自旋缺陷,并利用确定性图案转移技术将腔与光纤集成在一起。光纤集成氢化硼空腔能有效激发和收集氢化硼自旋缺陷产生的光信号,从而实现全光纤集成量子传感器。此外,还演示了铁磁材料和任意磁场的遥感。总之,基于混合光纤的量子传感平台可为新一代稳健、远程、多功能量子传感器铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
期刊最新文献
Resonantly Enhanced Infrared Up-Conversion in Double-Step Asymmetric Subwavelength Grating Structure (Advanced Optical Materials 32/2024) Masthead: (Advanced Optical Materials 32/2024) Fiber-Integrated van der Waals Quantum Sensor with an Optimal Cavity Interface (Advanced Optical Materials 32/2024) Large-Scale Fabrication of Room-Temperature Phosphorescence Cellulose Filaments with Color-Tunable Afterglows (Advanced Optical Materials 32/2024) Wide-Bandgap RBa3(B3O6)3 (R = Nd, Sm, Tb, Dy, and Er) Single Crystals for Ultraviolet Nonlinear Optics (Advanced Optical Materials 32/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1