Priyajit Dash, M. L. Meena, Girish Parmar, Afzal Sikander
{"title":"A new mixed order reduction method using bonobo optimizer and stability equation","authors":"Priyajit Dash, M. L. Meena, Girish Parmar, Afzal Sikander","doi":"10.1007/s00542-024-05767-z","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a mixed method of Order Reduction of High Order System (HOS) for both Multi-Input and Multi-Output (MIMO) and Single Input and Single Output (SISO) systems. The combination of a Conventional method of Order Reduction using the Stability Equation Method (SEM) and an optimization-based Order Reduction method using the Bonobo Optimizer Algorithm (BOA) have been utilized. Since an Order Reduction with the least amount of error is always preferred, Integral Square Error (ISE) has been taken into consideration as an Objective Function in this study. The Reduced Order Model (ROM) uses BOA to calculate the numerator coefficients and SEM to estimate the denominator coefficients. A comparison has been made between several performance indices using the well-known previous existing methods and the Proposed mixed method. Step response and Frequency response of the Proposed mixed method and existing methods comparison have been also made. It can be visible from the result that the proposed mixed method outperforms with Prior existing methods.</p>","PeriodicalId":18544,"journal":{"name":"Microsystem Technologies","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystem Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00542-024-05767-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a mixed method of Order Reduction of High Order System (HOS) for both Multi-Input and Multi-Output (MIMO) and Single Input and Single Output (SISO) systems. The combination of a Conventional method of Order Reduction using the Stability Equation Method (SEM) and an optimization-based Order Reduction method using the Bonobo Optimizer Algorithm (BOA) have been utilized. Since an Order Reduction with the least amount of error is always preferred, Integral Square Error (ISE) has been taken into consideration as an Objective Function in this study. The Reduced Order Model (ROM) uses BOA to calculate the numerator coefficients and SEM to estimate the denominator coefficients. A comparison has been made between several performance indices using the well-known previous existing methods and the Proposed mixed method. Step response and Frequency response of the Proposed mixed method and existing methods comparison have been also made. It can be visible from the result that the proposed mixed method outperforms with Prior existing methods.