DFT study of MoSe2 monolayers for cohesive adsorption of harmful gases CO, CO2, SO2, and NF3

Suman Sarkar, Papiya Debnath, Debashis De, Manash Chanda
{"title":"DFT study of MoSe2 monolayers for cohesive adsorption of harmful gases CO, CO2, SO2, and NF3","authors":"Suman Sarkar, Papiya Debnath, Debashis De, Manash Chanda","doi":"10.1007/s00542-024-05759-z","DOIUrl":null,"url":null,"abstract":"<p>According to the World Health Organization, contact with atmospheric airborne pollutants (CO, CO<sub>2</sub>, SO<sub>2</sub>, and NF<sub>3</sub>) causes 4.2 million deaths annually. Globally, there is a well-established demand for highly sensitive, inexpensive, tiny, and energy-efficient gas sensors that are able to recognize and steer clear of high pollution hotspots. Density functional theory (DFT) is utilized to analyze the electronic properties of CO, CO<sub>2</sub>, SO<sub>2</sub>, and NF<sub>3</sub> gases in the MoSe<sub>2</sub> monolayer for gas sensing mechanism. On MoSe<sub>2</sub>, calculations and discussions are made on the adsorption energies and configurations that are most stable. A detailed analysis is conducted on the adsorption distance (<i>d</i> (Å)), charge transfer (<i>Q</i><sub><i>T</i></sub>), adsorption energy (<i>E</i><sub><i>ads</i></sub>), band gap (<i>E</i><sub><i>g</i></sub>), density of states (DOS), electron difference density (EDD), and Recovery time <span>\\(\\left( \\tau \\right)\\)</span>. The outcomes attained demonstrate that the adsorption of CO, CO<sub>2</sub>, SO<sub>2</sub>, and NF<sub>3</sub> gases significantly alters the electrical characteristics as well as the adsorption of MoSe<sub>2</sub> monolayer. However, in comparison to CO, CO<sub>2</sub>, and SO<sub>2</sub>, the MoSe<sub>2</sub> monolayer system shows larger adsorption energy towards NF<sub>3</sub> and a higher sensitivity. The transport characteristics employing the non-equilibrium Green's function (NEGF) method validate the efficiency of the MoSe<sub>2</sub> monolayer in terms of considerable current–voltage (I–V) response for enhanced CO, CO<sub>2</sub>, SO<sub>2,</sub> and NF<sub>3</sub> gas sensing. Compared to CO, CO<sub>2</sub>, and SO<sub>2</sub>, MoSe<sub>2</sub> has a much higher sensitivity to NF<sub>3</sub>.</p>","PeriodicalId":18544,"journal":{"name":"Microsystem Technologies","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystem Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00542-024-05759-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

According to the World Health Organization, contact with atmospheric airborne pollutants (CO, CO2, SO2, and NF3) causes 4.2 million deaths annually. Globally, there is a well-established demand for highly sensitive, inexpensive, tiny, and energy-efficient gas sensors that are able to recognize and steer clear of high pollution hotspots. Density functional theory (DFT) is utilized to analyze the electronic properties of CO, CO2, SO2, and NF3 gases in the MoSe2 monolayer for gas sensing mechanism. On MoSe2, calculations and discussions are made on the adsorption energies and configurations that are most stable. A detailed analysis is conducted on the adsorption distance (d (Å)), charge transfer (QT), adsorption energy (Eads), band gap (Eg), density of states (DOS), electron difference density (EDD), and Recovery time \(\left( \tau \right)\). The outcomes attained demonstrate that the adsorption of CO, CO2, SO2, and NF3 gases significantly alters the electrical characteristics as well as the adsorption of MoSe2 monolayer. However, in comparison to CO, CO2, and SO2, the MoSe2 monolayer system shows larger adsorption energy towards NF3 and a higher sensitivity. The transport characteristics employing the non-equilibrium Green's function (NEGF) method validate the efficiency of the MoSe2 monolayer in terms of considerable current–voltage (I–V) response for enhanced CO, CO2, SO2, and NF3 gas sensing. Compared to CO, CO2, and SO2, MoSe2 has a much higher sensitivity to NF3.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对有害气体 CO、CO2、SO2 和 NF3 凝聚吸附的 MoSe2 单层的 DFT 研究
据世界卫生组织统计,每年因接触大气污染物(一氧化碳、二氧化碳、二氧化硫和氮氧化物)而死亡的人数达 420 万。在全球范围内,对能够识别并避开高污染热点地区的高灵敏度、廉价、微小且节能的气体传感器的需求已经得到了证实。本文利用密度泛函理论(DFT)分析了 CO、CO2、SO2 和 NF3 气体在 MoSe2 单层中的电子特性,以研究气体传感机制。对 MoSe2 的吸附能量和最稳定的构型进行了计算和讨论。对吸附距离(d(Å))、电荷转移(QT)、吸附能(Eads)、带隙(Eg)、状态密度(DOS)、电子差密度(EDD)和恢复时间(\left( \tau \right)\)进行了详细分析。研究结果表明,CO、CO2、SO2 和 NF3 气体的吸附极大地改变了 MoSe2 单层的电学特性和吸附性。不过,与 CO、CO2 和 SO2 相比,MoSe2 单层系统对 NF3 的吸附能量更大,灵敏度更高。采用非平衡格林函数(NEGF)方法测定的传输特性验证了 MoSe2 单层在增强 CO、CO2、SO2 和 NF3 气体传感方面的高效性,其电流-电压(I-V)响应相当可观。与 CO、CO2 和 SO2 相比,MoSe2 对 NF3 的灵敏度要高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of the initial viscosity and substrate corner geometry on edge beading of photoresist films An investigation on static, vibration and stability analyses of elastically restrained FG porous Timoshenko nanobeams Flexible capacitive humidity sensor based on potassium ion-doped PVA/CAB double-layer sensing film Modelling and optimization of compound lever-based displacement amplifier in a MEMS accelerometer Research on SMA motor modelling and control algorithm for optical image stabilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1