Taoyong Li, Luqi Li, Lan Jiang, Peng Yi, Min Li, Songchang Li, Xibiao Li, Xiangyu Zhang, Andong Wang, Zhi Wang, Jiafang Li, Lingling Huang, Bing Han, Xiaowei Li
{"title":"Reconfigurable Hologram Response to Liquid via the Femtosecond Laser Direct Writing of 3D Micropillars","authors":"Taoyong Li, Luqi Li, Lan Jiang, Peng Yi, Min Li, Songchang Li, Xibiao Li, Xiangyu Zhang, Andong Wang, Zhi Wang, Jiafang Li, Lingling Huang, Bing Han, Xiaowei Li","doi":"10.1002/adom.202400612","DOIUrl":null,"url":null,"abstract":"<p>Reconfigurable and tunable holograms hold significant practical value in the fields of anti-counterfeiting, optical security, and information display due to their ability to reprogram holographic patterns and create variable visual effects. However, current encryption techniques face challenges in achieving rapid encryption/decryption and ensuring consistent methods. In this study, a method for producing a reconfigurable encryption hologram utilizing the deformation and recovery properties of micropillars in response to liquid is demonstrated. Micron-scale micropillars are fabricated using femtosecond laser two-photon polymerization. By exploiting the rapid deformation and recovery capabilities of micropillars with specific pitches and aspect ratios in response to liquids, micropillar structures and holograms are combined to construct reconfigurable holograms. The encrypted pattern information in the reconfigurable holograms is only readable following immersion in alcohol and laser irradiation. The proposed method offers a facile, reversible, reusable, and practical solution for information encryption, with significant potential in anti-counterfeiting and optical security.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 29","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202400612","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reconfigurable and tunable holograms hold significant practical value in the fields of anti-counterfeiting, optical security, and information display due to their ability to reprogram holographic patterns and create variable visual effects. However, current encryption techniques face challenges in achieving rapid encryption/decryption and ensuring consistent methods. In this study, a method for producing a reconfigurable encryption hologram utilizing the deformation and recovery properties of micropillars in response to liquid is demonstrated. Micron-scale micropillars are fabricated using femtosecond laser two-photon polymerization. By exploiting the rapid deformation and recovery capabilities of micropillars with specific pitches and aspect ratios in response to liquids, micropillar structures and holograms are combined to construct reconfigurable holograms. The encrypted pattern information in the reconfigurable holograms is only readable following immersion in alcohol and laser irradiation. The proposed method offers a facile, reversible, reusable, and practical solution for information encryption, with significant potential in anti-counterfeiting and optical security.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.