Construction of Concentration Quenching‐Resistant Multi‐Resonance TADF Emitters via Positional Isomerization for OLEDs

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Optical Materials Pub Date : 2024-09-09 DOI:10.1002/adom.202401754
Xiong Xiao, Jia‐Jun Hu, Zhong‐Zhong Huo, Jia‐Qi Liang, Bo Yang, Xian‐Fang Hong, Zong‐Ju Chen, Yu Wang, Cheng‐Hui Li, You‐Xuan Zheng
{"title":"Construction of Concentration Quenching‐Resistant Multi‐Resonance TADF Emitters via Positional Isomerization for OLEDs","authors":"Xiong Xiao, Jia‐Jun Hu, Zhong‐Zhong Huo, Jia‐Qi Liang, Bo Yang, Xian‐Fang Hong, Zong‐Ju Chen, Yu Wang, Cheng‐Hui Li, You‐Xuan Zheng","doi":"10.1002/adom.202401754","DOIUrl":null,"url":null,"abstract":"Multiple resonance thermally activated delayed fluorescence (MR‐TADF) emitters are promising for high‐definition organic light‐emitting diodes (OLEDs) due to their high exciton utilization and color purity. However, strong interchromophore interactions cause most MR‐TADF emitters with planar structures to aggregate at high doping concentrations, leading to degraded efficiencies. Herein, using benzenesulfonyl‐functionalized dibenzothiophene sulfoximine with steric effects, three MR‐TADF emitters (2SBN, 3SBN, and 4SBN) are synthesized by coupling the classic DtBuCzB skeleton at different sites. Three emitters exhibit green or blue‐green emission with full width at half maximum (FWHM) values less than 29 nm and photoluminescence quantum yields exceeding 90%. OLEDs based on 2SBN, 3SBN, and 4SBN achieve high maximum external quantum efficiency (EQE<jats:sub>max</jats:sub>) values of 30.1%, 27%, and 33.8%, respectively, at a 5 wt.% doping concentration. Notably, due to the distorted conformation of 4SBN and suppressed intermolecular interaction, the OLED remains high EQE<jats:sub>max</jats:sub> of 28.9% at a doping concentration of 20 wt.%. These results demonstrate the feasibility of molecular design to modulate spatial conformations via positional isomerism to develop MR‐TADF emitters with reduced concentration quenching.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"3 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adom.202401754","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple resonance thermally activated delayed fluorescence (MR‐TADF) emitters are promising for high‐definition organic light‐emitting diodes (OLEDs) due to their high exciton utilization and color purity. However, strong interchromophore interactions cause most MR‐TADF emitters with planar structures to aggregate at high doping concentrations, leading to degraded efficiencies. Herein, using benzenesulfonyl‐functionalized dibenzothiophene sulfoximine with steric effects, three MR‐TADF emitters (2SBN, 3SBN, and 4SBN) are synthesized by coupling the classic DtBuCzB skeleton at different sites. Three emitters exhibit green or blue‐green emission with full width at half maximum (FWHM) values less than 29 nm and photoluminescence quantum yields exceeding 90%. OLEDs based on 2SBN, 3SBN, and 4SBN achieve high maximum external quantum efficiency (EQEmax) values of 30.1%, 27%, and 33.8%, respectively, at a 5 wt.% doping concentration. Notably, due to the distorted conformation of 4SBN and suppressed intermolecular interaction, the OLED remains high EQEmax of 28.9% at a doping concentration of 20 wt.%. These results demonstrate the feasibility of molecular design to modulate spatial conformations via positional isomerism to develop MR‐TADF emitters with reduced concentration quenching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过位置异构化构建用于有机发光二极管的抗浓度淬灭多共振 TADF 发射器
多重共振热激活延迟荧光(MR-TADF)发射器具有高激子利用率和色彩纯度,因此有望用于高清有机发光二极管(OLED)。然而,由于色团间的强相互作用,大多数具有平面结构的 MR-TADF 发射器在高掺杂浓度下会聚集在一起,导致效率降低。本文利用苯磺酰官能化二苯并噻吩亚磺酰亚胺的立体效应,通过在不同位点偶联经典的 DtBuCzB 骨架,合成了三种 MR-TADF 发射器(2SBN、3SBN 和 4SBN)。这三种发射体发出绿色或蓝绿色的光,其半最大全宽(FWHM)值小于 29 nm,光量子产率超过 90%。基于 2SBN、3SBN 和 4SBN 的有机发光二极管在 5 wt.% 掺杂浓度下的最大外部量子效率 (EQEmax) 分别达到 30.1%、27% 和 33.8%。值得注意的是,由于 4SBN 的扭曲构象和分子间相互作用受到抑制,当掺杂浓度为 20 wt.% 时,OLED 的 EQEmax 仍然高达 28.9%。这些结果证明了分子设计的可行性,即通过位置异构来调节空间构象,从而开发出减少浓度淬灭的 MR-TADF 发射器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
期刊最新文献
Resonantly Enhanced Infrared Up-Conversion in Double-Step Asymmetric Subwavelength Grating Structure (Advanced Optical Materials 32/2024) Masthead: (Advanced Optical Materials 32/2024) Fiber-Integrated van der Waals Quantum Sensor with an Optimal Cavity Interface (Advanced Optical Materials 32/2024) Large-Scale Fabrication of Room-Temperature Phosphorescence Cellulose Filaments with Color-Tunable Afterglows (Advanced Optical Materials 32/2024) Wide-Bandgap RBa3(B3O6)3 (R = Nd, Sm, Tb, Dy, and Er) Single Crystals for Ultraviolet Nonlinear Optics (Advanced Optical Materials 32/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1