Using Generative Agents to Create Tip Sheets for Investigative Data Reporting

Joris Veerbeek, Nicholas Diakopoulos
{"title":"Using Generative Agents to Create Tip Sheets for Investigative Data Reporting","authors":"Joris Veerbeek, Nicholas Diakopoulos","doi":"arxiv-2409.07286","DOIUrl":null,"url":null,"abstract":"This paper introduces a system using generative AI agents to create tip\nsheets for investigative data reporting. Our system employs three specialized\nagents--an analyst, a reporter, and an editor--to collaboratively generate and\nrefine tips from datasets. We validate this approach using real-world\ninvestigative stories, demonstrating that our agent-based system generally\ngenerates more newsworthy and accurate insights compared to a baseline model\nwithout agents, although some variability was noted between different stories.\nOur findings highlight the potential of generative AI to provide leads for\ninvestigative data reporting.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a system using generative AI agents to create tip sheets for investigative data reporting. Our system employs three specialized agents--an analyst, a reporter, and an editor--to collaboratively generate and refine tips from datasets. We validate this approach using real-world investigative stories, demonstrating that our agent-based system generally generates more newsworthy and accurate insights compared to a baseline model without agents, although some variability was noted between different stories. Our findings highlight the potential of generative AI to provide leads for investigative data reporting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用生成代理为调查数据报告创建提示表
本文介绍了一种使用生成式人工智能代理为调查性数据报告创建提示表的系统。我们的系统采用了三个专业代理--一名分析师、一名记者和一名编辑--协作生成和提炼来自数据集的提示。我们使用真实世界的调查报道验证了这种方法,结果表明,与没有代理的基线模型相比,我们基于代理的系统通常能生成更多有新闻价值的准确见解,尽管不同报道之间存在一些差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLMs + Persona-Plug = Personalized LLMs MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework Development and bilingual evaluation of Japanese medical large language model within reasonably low computational resources Human-like Affective Cognition in Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1