Ontology-Free General-Domain Knowledge Graph-to-Text Generation Dataset Synthesis using Large Language Model

Daehee Kim, Deokhyung Kang, Sangwon Ryu, Gary Geunbae Lee
{"title":"Ontology-Free General-Domain Knowledge Graph-to-Text Generation Dataset Synthesis using Large Language Model","authors":"Daehee Kim, Deokhyung Kang, Sangwon Ryu, Gary Geunbae Lee","doi":"arxiv-2409.07088","DOIUrl":null,"url":null,"abstract":"Knowledge Graph-to-Text (G2T) generation involves verbalizing structured\nknowledge graphs into natural language text. Recent advancements in Pretrained\nLanguage Models (PLMs) have improved G2T performance, but their effectiveness\ndepends on datasets with precise graph-text alignment. However, the scarcity of\nhigh-quality, general-domain G2T generation datasets restricts progress in the\ngeneral-domain G2T generation research. To address this issue, we introduce\nWikipedia Ontology-Free Graph-text dataset (WikiOFGraph), a new large-scale G2T\ndataset generated using a novel method that leverages Large Language Model\n(LLM) and Data-QuestEval. Our new dataset, which contains 5.85M general-domain\ngraph-text pairs, offers high graph-text consistency without relying on\nexternal ontologies. Experimental results demonstrate that PLM fine-tuned on\nWikiOFGraph outperforms those trained on other datasets across various\nevaluation metrics. Our method proves to be a scalable and effective solution\nfor generating high-quality G2T data, significantly advancing the field of G2T\ngeneration.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge Graph-to-Text (G2T) generation involves verbalizing structured knowledge graphs into natural language text. Recent advancements in Pretrained Language Models (PLMs) have improved G2T performance, but their effectiveness depends on datasets with precise graph-text alignment. However, the scarcity of high-quality, general-domain G2T generation datasets restricts progress in the general-domain G2T generation research. To address this issue, we introduce Wikipedia Ontology-Free Graph-text dataset (WikiOFGraph), a new large-scale G2T dataset generated using a novel method that leverages Large Language Model (LLM) and Data-QuestEval. Our new dataset, which contains 5.85M general-domain graph-text pairs, offers high graph-text consistency without relying on external ontologies. Experimental results demonstrate that PLM fine-tuned on WikiOFGraph outperforms those trained on other datasets across various evaluation metrics. Our method proves to be a scalable and effective solution for generating high-quality G2T data, significantly advancing the field of G2T generation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大型语言模型进行无本体泛域知识图到文本生成数据集合成
知识图谱到文本(G2T)的生成涉及将结构化知识图谱口头化为自然语言文本。预训练语言模型(PLM)的最新进展提高了 G2T 的性能,但其有效性取决于图-文精确对齐的数据集。然而,高质量通用域 G2T 生成数据集的稀缺限制了通用域 G2T 生成研究的进展。为了解决这个问题,我们引入了维基百科无本体图-文本数据集(WikiOFGraph),这是一种利用大型语言模型(LLM)和数据查询评估(Data-QuestEval)的新方法生成的新的大规模 G2T 数据集。我们的新数据集包含 585 万个通用图-文本对,无需依赖外部本体就能提供高度的图-文本一致性。实验结果表明,基于 WikiOFGraph 微调的 PLM 在各种评价指标上都优于在其他数据集上训练的 PLM。我们的方法被证明是生成高质量 G2T 数据的一种可扩展的有效解决方案,极大地推动了 G2T 生成领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLMs + Persona-Plug = Personalized LLMs MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework Development and bilingual evaluation of Japanese medical large language model within reasonably low computational resources Human-like Affective Cognition in Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1