TravelAgent: An AI Assistant for Personalized Travel Planning

Aili Chen, Xuyang Ge, Ziquan Fu, Yanghua Xiao, Jiangjie Chen
{"title":"TravelAgent: An AI Assistant for Personalized Travel Planning","authors":"Aili Chen, Xuyang Ge, Ziquan Fu, Yanghua Xiao, Jiangjie Chen","doi":"arxiv-2409.08069","DOIUrl":null,"url":null,"abstract":"As global tourism expands and artificial intelligence technology advances,\nintelligent travel planning services have emerged as a significant research\nfocus. Within dynamic real-world travel scenarios with multi-dimensional\nconstraints, services that support users in automatically creating practical\nand customized travel itineraries must address three key objectives:\nRationality, Comprehensiveness, and Personalization. However, existing systems\nwith rule-based combinations or LLM-based planning methods struggle to fully\nsatisfy these criteria. To overcome the challenges, we introduce TravelAgent, a\ntravel planning system powered by large language models (LLMs) designed to\nprovide reasonable, comprehensive, and personalized travel itineraries grounded\nin dynamic scenarios. TravelAgent comprises four modules: Tool-usage,\nRecommendation, Planning, and Memory Module. We evaluate TravelAgent's\nperformance with human and simulated users, demonstrating its overall\neffectiveness in three criteria and confirming the accuracy of personalized\nrecommendations.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As global tourism expands and artificial intelligence technology advances, intelligent travel planning services have emerged as a significant research focus. Within dynamic real-world travel scenarios with multi-dimensional constraints, services that support users in automatically creating practical and customized travel itineraries must address three key objectives: Rationality, Comprehensiveness, and Personalization. However, existing systems with rule-based combinations or LLM-based planning methods struggle to fully satisfy these criteria. To overcome the challenges, we introduce TravelAgent, a travel planning system powered by large language models (LLMs) designed to provide reasonable, comprehensive, and personalized travel itineraries grounded in dynamic scenarios. TravelAgent comprises four modules: Tool-usage, Recommendation, Planning, and Memory Module. We evaluate TravelAgent's performance with human and simulated users, demonstrating its overall effectiveness in three criteria and confirming the accuracy of personalized recommendations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TravelAgent:个性化旅行规划的人工智能助手
随着全球旅游业的发展和人工智能技术的进步,智能旅行规划服务已成为一个重要的研究焦点。在具有多维约束条件的动态真实世界旅行场景中,支持用户自动创建实用和定制化旅行路线的服务必须满足三个关键目标:合理性、全面性和个性化。然而,现有系统中基于规则的组合或基于 LLM 的规划方法很难完全满足这些标准。为了克服这些挑战,我们推出了 TravelAgent,一个由大型语言模型(LLM)驱动的旅行规划系统,旨在提供基于动态场景的合理、全面和个性化的旅行路线。TravelAgent 包括四个模块:工具使用模块、推荐模块、规划模块和记忆模块。我们通过人类用户和模拟用户对 TravelAgent 的性能进行了评估,证明了它在三个标准上的超强功效,并证实了个性化推荐的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLMs + Persona-Plug = Personalized LLMs MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework Development and bilingual evaluation of Japanese medical large language model within reasonably low computational resources Human-like Affective Cognition in Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1