PBb-LMFO: a levy flight integrated MFO inspired ensemble model for cancer diagnosis

Sabita Rani Behera, Bibudhendu Pati, Sasmita Parida
{"title":"PBb-LMFO: a levy flight integrated MFO inspired ensemble model for cancer diagnosis","authors":"Sabita Rani Behera, Bibudhendu Pati, Sasmita Parida","doi":"10.1007/s41870-024-02122-3","DOIUrl":null,"url":null,"abstract":"<p>To build a Cancer prediction model based on ML, one needs data of a certain sort, such as gene expression data or microarray data. To reduce the dataset's dimensionality, feature selection is proposed as an optimal solution to high dimensionality challenges and to deal with microarray data, this research work aims to perform the 2-stage feature selection. In the initial stage, the Particle Swarm Optimization (PSO) and Bare-bone PSO (BBPSO) are applied to the dataset separately. Then the common features selected by PSO and BBPSO are considered. Then Levy Flight Moth Flame Optimization (LFMFO) is applied to choose the final optimal set of features. Basic existing ML classifiers are used for the first prediction. Afterwards, the Majority Voting technique is applied to develop the ensemble technique. The proposed model is developed over four Cancer microarray datasets, including CNS, Lung Cancer, Ovarian Cancer, and Breast Cancer. The experimental analysis presents the proposed model obtains the highest accuracy of 98.81% for the Ovarian Cancer dataset.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"391 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02122-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To build a Cancer prediction model based on ML, one needs data of a certain sort, such as gene expression data or microarray data. To reduce the dataset's dimensionality, feature selection is proposed as an optimal solution to high dimensionality challenges and to deal with microarray data, this research work aims to perform the 2-stage feature selection. In the initial stage, the Particle Swarm Optimization (PSO) and Bare-bone PSO (BBPSO) are applied to the dataset separately. Then the common features selected by PSO and BBPSO are considered. Then Levy Flight Moth Flame Optimization (LFMFO) is applied to choose the final optimal set of features. Basic existing ML classifiers are used for the first prediction. Afterwards, the Majority Voting technique is applied to develop the ensemble technique. The proposed model is developed over four Cancer microarray datasets, including CNS, Lung Cancer, Ovarian Cancer, and Breast Cancer. The experimental analysis presents the proposed model obtains the highest accuracy of 98.81% for the Ovarian Cancer dataset.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PBb-LMFO:用于癌症诊断的征费飞行集成 MFO 启发集合模型
要建立基于 ML 的癌症预测模型,需要一定类型的数据,如基因表达数据或微阵列数据。为了降低数据集的维度,特征选择被认为是解决高维度挑战的最佳方案,而为了处理微阵列数据,本研究工作旨在进行两阶段特征选择。在初始阶段,粒子群优化(PSO)和裸粒子群优化(BBPSO)分别应用于数据集。然后考虑 PSO 和 BBPSO 选出的共同特征。然后应用利维飞蛾火焰优化(LFMFO)来选择最终的最优特征集。现有的基本 ML 分类器用于首次预测。然后,应用多数票技术开发集合技术。所提出的模型是在中枢神经系统、肺癌、卵巢癌和乳腺癌等四个癌症微阵列数据集上开发的。实验分析表明,所提出的模型在卵巢癌数据集上获得了 98.81% 的最高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical cryptanalysis of seven classical lightweight ciphers CNN-BO-LSTM: an ensemble framework for prognosis of liver cancer Architecting lymphoma fusion: PROMETHEE-II guided optimization of combination therapeutic synergy RBCA-ETS: enhancing extractive text summarization with contextual embedding and word-level attention RAMD and transient analysis of a juice clarification unit in sugar plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1