Image segmentation of phase-modulated holographic data storage based on deep learning

IF 3.2 2区 物理与天体物理 Q2 OPTICS Optics express Pub Date : 2024-09-09 DOI:10.1364/oe.536783
Ruixian Chen, Jinyu Wang, Shaodong Zhang, Rongquan Fan, Dakui Lin, Xiong Li, Jihong Zheng, Qiang Cao, Jianying Hao, Xiao Lin, Xiaodi Tan
{"title":"Image segmentation of phase-modulated holographic data storage based on deep learning","authors":"Ruixian Chen, Jinyu Wang, Shaodong Zhang, Rongquan Fan, Dakui Lin, Xiong Li, Jihong Zheng, Qiang Cao, Jianying Hao, Xiao Lin, Xiaodi Tan","doi":"10.1364/oe.536783","DOIUrl":null,"url":null,"abstract":"Phase retrieval based on data-driven deep learning (DL) is a suitable decoding method for phase-modulated holographic data storage (HDS). Once the DL network is trained, the phase can be directly retrieved from the corresponding diffraction intensity image with high data transfer rate and low bit error rate. Traditional data-driven DL-based phase retrieval requires a large number of known samples for training, which is usually laborious for practical applications such as HDS. In the paper, we propose an image segmentation method based on image features, leading to about 54 times reduction in the number of original sample pairs (OSP) for training DL network. The proposed method is easy to implement in practical situations of HDS.","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"24 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/oe.536783","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Phase retrieval based on data-driven deep learning (DL) is a suitable decoding method for phase-modulated holographic data storage (HDS). Once the DL network is trained, the phase can be directly retrieved from the corresponding diffraction intensity image with high data transfer rate and low bit error rate. Traditional data-driven DL-based phase retrieval requires a large number of known samples for training, which is usually laborious for practical applications such as HDS. In the paper, we propose an image segmentation method based on image features, leading to about 54 times reduction in the number of original sample pairs (OSP) for training DL network. The proposed method is easy to implement in practical situations of HDS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的相位调制全息数据存储的图像分割
基于数据驱动深度学习(DL)的相位检索是一种适用于相位调制全息数据存储(HDS)的解码方法。一旦 DL 网络训练完成,就可以直接从相应的衍射强度图像中检索相位,而且数据传输率高、误码率低。传统的基于数据驱动的衍射网络相位检索需要大量已知样本进行训练,这对于像 HDS 这样的实际应用来说通常非常费力。本文提出了一种基于图像特征的图像分割方法,可将用于训练 DL 网络的原始样本对(OSP)数量减少约 54 倍。所提出的方法在 HDS 的实际应用中很容易实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
期刊最新文献
Adaptive generation of optical single-sideband signal with dually modulated EML. Manipulating reflection-type all-dielectric non-local metasurfaces via the parity of a particle number. SSBI counteraction technology in a single photodetector-based direct detection system receiving an independent dual-single sideband signal. Adaptive-modulated fast fluctuation super-resolution microscopy. Measurement and analysis of photoacoustic pressure induced by weak microsecond pulsed light.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1