{"title":"Chalcogenide Ge20Sb5Se75 photonic crystal fiber with seven air-hole rings for ultraflat mid-infrared supercontinuum generation","authors":"Lanh Chu Van, Bao Tran Le Tran","doi":"10.1088/1555-6611/ad6d4b","DOIUrl":null,"url":null,"abstract":"Supercontinuum (SC) generation in solid-core circular photonic crystal fibers (PCFs) made of Ge<sub>20</sub>Sb<sub>5</sub>Se<sub>75</sub> is numerically analyzed. A large core is projected to increase light coupling efficiency into selected PCFs as well as raise coupling to standard silica fibers. High nonlinear coefficient and near-zero flat dispersion allow ultraflat SC spanning 1.5–4.6 <italic toggle=\"yes\">μ</italic>m in an all-normal dispersion regime. This requires 3 kW of peak power with 180 fs of pulse duration. The fiber with one zero-dispersion wavelength (ZDW) generates SC bandwidth in the range of 1.54–7.39 <italic toggle=\"yes\">μ</italic>m at 3.5 <italic toggle=\"yes\">μ</italic>m using peak power of 10 kW. For the same input power, the SC spectral covers from 1.39 to 7.36 <italic toggle=\"yes\">μ</italic>m in 10 cm of fiber with two ZDWs. These are wider SC bandwidths than those of previous chalcogenide fibers reached with lower peak powers. Therefore, the proposed Ge<sub>20</sub>Sb<sub>5</sub>Se<sub>75</sub> PCFs are excellent candidates for the broadband ultraflat mid-infrared SC spectra used in high-speed nonlinear imaging and frequency measurement.","PeriodicalId":17976,"journal":{"name":"Laser Physics","volume":"29 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1555-6611/ad6d4b","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Supercontinuum (SC) generation in solid-core circular photonic crystal fibers (PCFs) made of Ge20Sb5Se75 is numerically analyzed. A large core is projected to increase light coupling efficiency into selected PCFs as well as raise coupling to standard silica fibers. High nonlinear coefficient and near-zero flat dispersion allow ultraflat SC spanning 1.5–4.6 μm in an all-normal dispersion regime. This requires 3 kW of peak power with 180 fs of pulse duration. The fiber with one zero-dispersion wavelength (ZDW) generates SC bandwidth in the range of 1.54–7.39 μm at 3.5 μm using peak power of 10 kW. For the same input power, the SC spectral covers from 1.39 to 7.36 μm in 10 cm of fiber with two ZDWs. These are wider SC bandwidths than those of previous chalcogenide fibers reached with lower peak powers. Therefore, the proposed Ge20Sb5Se75 PCFs are excellent candidates for the broadband ultraflat mid-infrared SC spectra used in high-speed nonlinear imaging and frequency measurement.
期刊介绍:
Laser Physics offers a comprehensive view of theoretical and experimental laser research and applications. Articles cover every aspect of modern laser physics and quantum electronics, emphasizing physical effects in various media (solid, gaseous, liquid) leading to the generation of laser radiation; peculiarities of propagation of laser radiation; problems involving impact of laser radiation on various substances and the emerging physical effects, including coherent ones; the applied use of lasers and laser spectroscopy; the processing and storage of information; and more.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics