Influence of Printing Strategies on the Microstructure and Mechanical Properties of Additively Manufactured Alloy 625 Using Directed Energy Deposition (DED-LB-p)
{"title":"Influence of Printing Strategies on the Microstructure and Mechanical Properties of Additively Manufactured Alloy 625 Using Directed Energy Deposition (DED-LB-p)","authors":"Florian Scherm, Haneen Daoud, Uwe Glatzel","doi":"10.3390/met14091041","DOIUrl":null,"url":null,"abstract":"Directed energy deposition (DED-LB-p) is used for the production of large components due to the high deposition rates. The large number of process parameters and printing strategies makes it difficult to optimize this process to achieve the optimal properties. Intensive post-processing is still the main obstacle to the widespread use of this process. In this work, the influence of different printing strategies and process parameters on the microstructural and tensile mechanical performance at room temperature is investigated. The porosity is measured in both printing directions. The grain orientation and size are analyzed by EBSD. A very low porosity of less than 0.4% is found in all the printed samples. The samples printed with the optimized offset printing strategy show a significant improvement in tensile strength of 1000 MPa without heat treatment compared to the other processing routes.","PeriodicalId":18461,"journal":{"name":"Metals","volume":"127 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14091041","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Directed energy deposition (DED-LB-p) is used for the production of large components due to the high deposition rates. The large number of process parameters and printing strategies makes it difficult to optimize this process to achieve the optimal properties. Intensive post-processing is still the main obstacle to the widespread use of this process. In this work, the influence of different printing strategies and process parameters on the microstructural and tensile mechanical performance at room temperature is investigated. The porosity is measured in both printing directions. The grain orientation and size are analyzed by EBSD. A very low porosity of less than 0.4% is found in all the printed samples. The samples printed with the optimized offset printing strategy show a significant improvement in tensile strength of 1000 MPa without heat treatment compared to the other processing routes.
期刊介绍:
Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.