Research on Microstructural Evolution Behavior of Ni-Based Single-Crystal Alloy with Re Based on Non-Linear Ultrasonic Lamb Wave and Molecular Dynamics Method
{"title":"Research on Microstructural Evolution Behavior of Ni-Based Single-Crystal Alloy with Re Based on Non-Linear Ultrasonic Lamb Wave and Molecular Dynamics Method","authors":"Ben Li, Yilin Zhang, Hongyan Zhou, Xuewu Li","doi":"10.3390/met14091016","DOIUrl":null,"url":null,"abstract":"Interface dislocation networks have a great influence on the mechanical properties of the new Ni-based single-crystal alloy (NSC) containing Re, but it is difficult to find out the structural evolution behaviors at the micro-level. Thus, molecular dynamics (MD) simulation is used to analyze the atomic potential energy change and dislocation evolution mechanism, and non-linear characteristic parameters are used to analyze the microstructure evolution of NSC. First, a new model of Ni-Al-Re that is closer to the real properties of the material is established using the MD method according to the optimal volume ratio of matrix phase to precipitate phase. Then, the MD models of NSC with different contents of Re are calculated and analyzed under compressive and tensile loads. The results show that with an increase in Re atoms, the atomic potential energy at the interface dislocation networks is reduced; thus, the stability of the system is enhanced, and the hindrance of the interface dislocation networks to the dislocation movement of the matrix phase is strengthened. At the same time, the number of HCP structures and OISs formed by the destruction of the intact FCC structures also decreases. In the non-linear ultrasonic experiment, with the increase in Re atoms, the non-linear enhancement of the microstructure of the NSC leads to an increase in the corresponding non-linear characteristic parameters. Accordingly, the microstructural evolution behaviors of the phase interface of the new NSC can be effectively explored using the combination of MD simulation and non-linear ultrasonic experimentation. The results of this study lay a foundation for the subsequent research of the microscopic defects of NSCs by using ultrasonic phased-array technology.","PeriodicalId":18461,"journal":{"name":"Metals","volume":"11 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14091016","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Interface dislocation networks have a great influence on the mechanical properties of the new Ni-based single-crystal alloy (NSC) containing Re, but it is difficult to find out the structural evolution behaviors at the micro-level. Thus, molecular dynamics (MD) simulation is used to analyze the atomic potential energy change and dislocation evolution mechanism, and non-linear characteristic parameters are used to analyze the microstructure evolution of NSC. First, a new model of Ni-Al-Re that is closer to the real properties of the material is established using the MD method according to the optimal volume ratio of matrix phase to precipitate phase. Then, the MD models of NSC with different contents of Re are calculated and analyzed under compressive and tensile loads. The results show that with an increase in Re atoms, the atomic potential energy at the interface dislocation networks is reduced; thus, the stability of the system is enhanced, and the hindrance of the interface dislocation networks to the dislocation movement of the matrix phase is strengthened. At the same time, the number of HCP structures and OISs formed by the destruction of the intact FCC structures also decreases. In the non-linear ultrasonic experiment, with the increase in Re atoms, the non-linear enhancement of the microstructure of the NSC leads to an increase in the corresponding non-linear characteristic parameters. Accordingly, the microstructural evolution behaviors of the phase interface of the new NSC can be effectively explored using the combination of MD simulation and non-linear ultrasonic experimentation. The results of this study lay a foundation for the subsequent research of the microscopic defects of NSCs by using ultrasonic phased-array technology.
期刊介绍:
Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.