{"title":"Effect of Fe Element and Ultrasonic Vibration on the Microstructure and Mechanical Properties of the Cu-TiB2 Composites","authors":"Siruo Zhang, Guanglong Li, Cunhu Duan, Yingdong Qu, Min Cheng, Shulin Dong","doi":"10.3390/met14091007","DOIUrl":null,"url":null,"abstract":"Cu-(Fe-Ti)-TiB2 composites were prepared by in situ reaction and vacuum casting with and without ultrasonic vibration. The evolution of the microstructure and mechanical properties of the composite with the variation in Fe element was analyzed. The import of Fe elements could purify the matrix after in situ reaction and the formation of a nanoprecipitated phase, thus improving the strength of Cu-Fe-Ti-TiB2 composites. Meanwhile, compared with the traditional casting process, the Cu-Fe-Ti-TiB2 composites with ultrasonic vibration treatment exhibit uniform TiB2 particle distribution and better properties. The tensile strength and uniform elongation of the composite with a Fe content of 0.7 wt.% reached 511 MPa and 6.02%, increasing by 14.3% and 318% compared to the unalloyed composite, respectively. The tensile strength and uniform elongation of Cu-0.7Fe-Ti-TiB2 composite with ultrasonic vibration treatment increased to 533 MPa and 7.16%, respectively. The TiB2 microscale particles and Fe2Ti nanoscale precipitates with uniform distribution effectively impeded dislocation movement and recrystallization, which improved the tensile strength and stability at elevated temperatures.","PeriodicalId":18461,"journal":{"name":"Metals","volume":"70 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14091007","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cu-(Fe-Ti)-TiB2 composites were prepared by in situ reaction and vacuum casting with and without ultrasonic vibration. The evolution of the microstructure and mechanical properties of the composite with the variation in Fe element was analyzed. The import of Fe elements could purify the matrix after in situ reaction and the formation of a nanoprecipitated phase, thus improving the strength of Cu-Fe-Ti-TiB2 composites. Meanwhile, compared with the traditional casting process, the Cu-Fe-Ti-TiB2 composites with ultrasonic vibration treatment exhibit uniform TiB2 particle distribution and better properties. The tensile strength and uniform elongation of the composite with a Fe content of 0.7 wt.% reached 511 MPa and 6.02%, increasing by 14.3% and 318% compared to the unalloyed composite, respectively. The tensile strength and uniform elongation of Cu-0.7Fe-Ti-TiB2 composite with ultrasonic vibration treatment increased to 533 MPa and 7.16%, respectively. The TiB2 microscale particles and Fe2Ti nanoscale precipitates with uniform distribution effectively impeded dislocation movement and recrystallization, which improved the tensile strength and stability at elevated temperatures.
期刊介绍:
Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.