{"title":"Fluid Dynamics Studies on Bottom Liquid Detachment from a Rising Bubble Crossing a Liquid–Liquid Interface","authors":"Xiangfeng Cheng, Gele Qing, Zhixing Zhao, Baojun Zhao","doi":"10.3390/met14091005","DOIUrl":null,"url":null,"abstract":"The detachment regimes and corresponding detachment height of lower liquid from a coated bubble during the bubble passage through an immiscible liquid–liquid interface were studied. High-speed imaging techniques were used to visualize the lower liquid detachment from a rising bubble near the interface. Analysis of industrial slag samples by a scanning electron microscope (SEM) was also carried out. The results indicate that the detachment height of lower liquid from a rising bubble showed a distinct correlation to penetration regimes. Bubble size and a fluid’s physical properties exerted a significant influence on the detachment height of the lower liquid. The detachment height for medium bubbles (Weber number: 4~4.5; Bond number: 2.5~7.5) varied significantly with increasing bubble size, which contributes to the lower liquid entrainment in the upper phase due, significantly, to the higher detachment height and large entrainment volume. The maximum detachment height for large bubbles is limited to approximately 100 mm due to the early detachment with the liquid column at the interface though large bubbles transporting a larger volume of lower liquid into the upper phase.","PeriodicalId":18461,"journal":{"name":"Metals","volume":"31 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14091005","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The detachment regimes and corresponding detachment height of lower liquid from a coated bubble during the bubble passage through an immiscible liquid–liquid interface were studied. High-speed imaging techniques were used to visualize the lower liquid detachment from a rising bubble near the interface. Analysis of industrial slag samples by a scanning electron microscope (SEM) was also carried out. The results indicate that the detachment height of lower liquid from a rising bubble showed a distinct correlation to penetration regimes. Bubble size and a fluid’s physical properties exerted a significant influence on the detachment height of the lower liquid. The detachment height for medium bubbles (Weber number: 4~4.5; Bond number: 2.5~7.5) varied significantly with increasing bubble size, which contributes to the lower liquid entrainment in the upper phase due, significantly, to the higher detachment height and large entrainment volume. The maximum detachment height for large bubbles is limited to approximately 100 mm due to the early detachment with the liquid column at the interface though large bubbles transporting a larger volume of lower liquid into the upper phase.
期刊介绍:
Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.