Dianxian Zhan, Dezhi Jiang, Yonggang Tong, Mingjun Zhang, Jian Zhang, Hongwei Hu, Zhenlin Zhang, Kaiming Wang
{"title":"Effect of Electromagnetic Field Assistance on the Wear and Corrosion Resistance of Nickel-Based Coating by Laser Cladding","authors":"Dianxian Zhan, Dezhi Jiang, Yonggang Tong, Mingjun Zhang, Jian Zhang, Hongwei Hu, Zhenlin Zhang, Kaiming Wang","doi":"10.3390/met14090998","DOIUrl":null,"url":null,"abstract":"Offshore wind turbine generators usually demand higher requirements for key component materials because of the adverse working environment. Therefore, in this study, electromagnetic-assisted laser cladding technology was introduced to prepare the nickel-based composite coating on the Q345R matrix of wind turbine generator key component material. By means of Scanning Electron Microscope (SEM), X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), the Vickers hardness tester, friction and wear tester, and electrochemical workstation, the effects of different magnetic field intensities on the macroscopic morphology, microstructure, phase composition, microhardness, wear resistance, and corrosion resistance of the coating were analyzed. The experimental results show that the addition of a magnetic field can effectively reduce the surface defects, improve the surface morphology, and not change the phase composition of the coating. With the increase in magnetic field intensity, the microstructure is gradually refined, and the average microhardness increases gradually, reaching a maximum of 944HV0.5 at 8 T. The wear resistance gradually increases with the increase in magnetic field intensity, especially when the magnetic field intensity reaches 12 T, the wear rate of the coating is reduced by 81.13%, and the corrosion current density is reduced by 43.7% compared with the coating without a magnetic field. The addition of an electromagnetic field can enhance the wear resistance and corrosion resistance of the nickel-based laser cladding layer.","PeriodicalId":18461,"journal":{"name":"Metals","volume":"66 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14090998","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Offshore wind turbine generators usually demand higher requirements for key component materials because of the adverse working environment. Therefore, in this study, electromagnetic-assisted laser cladding technology was introduced to prepare the nickel-based composite coating on the Q345R matrix of wind turbine generator key component material. By means of Scanning Electron Microscope (SEM), X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), the Vickers hardness tester, friction and wear tester, and electrochemical workstation, the effects of different magnetic field intensities on the macroscopic morphology, microstructure, phase composition, microhardness, wear resistance, and corrosion resistance of the coating were analyzed. The experimental results show that the addition of a magnetic field can effectively reduce the surface defects, improve the surface morphology, and not change the phase composition of the coating. With the increase in magnetic field intensity, the microstructure is gradually refined, and the average microhardness increases gradually, reaching a maximum of 944HV0.5 at 8 T. The wear resistance gradually increases with the increase in magnetic field intensity, especially when the magnetic field intensity reaches 12 T, the wear rate of the coating is reduced by 81.13%, and the corrosion current density is reduced by 43.7% compared with the coating without a magnetic field. The addition of an electromagnetic field can enhance the wear resistance and corrosion resistance of the nickel-based laser cladding layer.
期刊介绍:
Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.