{"title":"Equivalent inertia prediction for power systems with virtual inertia based on PSO-SVM","authors":"Qiaoling Yang, Jiaheng Duan, Hui Bian, Boyan Zhang","doi":"10.1007/s00202-024-02676-2","DOIUrl":null,"url":null,"abstract":"<p>Inertia prediction for power systems with a high proportion of renewable energy units can help coordinate inertia support methods, guide power system planning, and lower grid operational risk. Existing inertia prediction methods rarely use machine learning to predict the equivalent inertia of the power system, and there is also little consideration of the virtual inertia of the renewable energy units; some of the prediction methods rely on massive volumes of system data and suffer from issues such as data redundancy and complex pre-processing procedures. A method for predicting the equivalent inertia for power systems based on particle swarm optimization support vector machines (PSO-SVM) is proposed for this purpose. The method initially creates a database of system-equivalent inertia, which regards the power change and system frequency rate of change as feature inputs and the system-equivalent inertia as an output. Then, the optimal prediction model is matched using the feature difference matrix, and the PSO-SVM prediction method is utilized to predict the power system's equivalent inertia. The method proposed in this paper is validated by an improved three-machine nine-node power system, and the prediction accuracy is better than that of GA-BP neural network and SVM algorithms, and then the applicability in complex scenarios is validated by a ten-machine, thirty-nine-node power system as well as a site-specific power system under real-time wind speeds. The PSO-SVM prediction method reduces the maximum error by 23.64% compared to the GA-BP neural network and 68.27% compared to the SVM algorithm and the results show that the method proposed in this paper can more accurately predict inertial changes and inertial information of the system when a loading accident occurs.</p>","PeriodicalId":50546,"journal":{"name":"Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00202-024-02676-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Inertia prediction for power systems with a high proportion of renewable energy units can help coordinate inertia support methods, guide power system planning, and lower grid operational risk. Existing inertia prediction methods rarely use machine learning to predict the equivalent inertia of the power system, and there is also little consideration of the virtual inertia of the renewable energy units; some of the prediction methods rely on massive volumes of system data and suffer from issues such as data redundancy and complex pre-processing procedures. A method for predicting the equivalent inertia for power systems based on particle swarm optimization support vector machines (PSO-SVM) is proposed for this purpose. The method initially creates a database of system-equivalent inertia, which regards the power change and system frequency rate of change as feature inputs and the system-equivalent inertia as an output. Then, the optimal prediction model is matched using the feature difference matrix, and the PSO-SVM prediction method is utilized to predict the power system's equivalent inertia. The method proposed in this paper is validated by an improved three-machine nine-node power system, and the prediction accuracy is better than that of GA-BP neural network and SVM algorithms, and then the applicability in complex scenarios is validated by a ten-machine, thirty-nine-node power system as well as a site-specific power system under real-time wind speeds. The PSO-SVM prediction method reduces the maximum error by 23.64% compared to the GA-BP neural network and 68.27% compared to the SVM algorithm and the results show that the method proposed in this paper can more accurately predict inertial changes and inertial information of the system when a loading accident occurs.
期刊介绍:
The journal “Electrical Engineering” following the long tradition of Archiv für Elektrotechnik publishes original papers of archival value in electrical engineering with a strong focus on electric power systems, smart grid approaches to power transmission and distribution, power system planning, operation and control, electricity markets, renewable power generation, microgrids, power electronics, electrical machines and drives, electric vehicles, railway electrification systems and electric transportation infrastructures, energy storage in electric power systems and vehicles, high voltage engineering, electromagnetic transients in power networks, lightning protection, electrical safety, electrical insulation systems, apparatus, devices, and components. Manuscripts describing theoretical, computer application and experimental research results are welcomed.
Electrical Engineering - Archiv für Elektrotechnik is published in agreement with Verband der Elektrotechnik Elektronik Informationstechnik eV (VDE).