Alec Yen, Yufeng Ye, Kaidong Peng, Jennifer Wang, Gregory Cunningham, Michael Gingras, Bethany M. Niedzielski, Hannah Stickler, Kyle Serniak, Mollie E. Schwartz, Kevin P. O’Brien
{"title":"Directional emission of a readout resonator for qubit measurement","authors":"Alec Yen, Yufeng Ye, Kaidong Peng, Jennifer Wang, Gregory Cunningham, Michael Gingras, Bethany M. Niedzielski, Hannah Stickler, Kyle Serniak, Mollie E. Schwartz, Kevin P. O’Brien","doi":"10.1103/physrevapplied.22.034035","DOIUrl":null,"url":null,"abstract":"We propose and demonstrate transmission-based dispersive readout of a superconducting qubit using an all-pass resonator, which preferentially emits readout photons toward the output. This is in contrast to typical readout schemes, which intentionally mismatch the feedline at one end so that the readout signal preferentially decays toward the output. We show that this intentional mismatch creates scaling challenges, including larger spread of effective resonator linewidths due to nonideal impedance environments and added infrastructure for impedance matching. A future architecture using multiplexed all-pass readout resonators would avoid the need for intentional mismatch and potentially improve the scaling prospects of quantum computers. As a proof-of-concept demonstration of “all-pass readout,” we design and fabricate an all-pass readout resonator that demonstrates insertion loss below 1.17 dB at the readout frequency and a maximum insertion loss of 1.53 dB across its full bandwidth for the lowest three states of a transmon qubit. We demonstrate qubit readout with an average single-shot fidelity of 98.1% in 600 ns; to assess the effect of larger dispersive shift, we implement a shelving protocol and achieve a fidelity of 99.0% in 300 ns.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"6 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034035","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We propose and demonstrate transmission-based dispersive readout of a superconducting qubit using an all-pass resonator, which preferentially emits readout photons toward the output. This is in contrast to typical readout schemes, which intentionally mismatch the feedline at one end so that the readout signal preferentially decays toward the output. We show that this intentional mismatch creates scaling challenges, including larger spread of effective resonator linewidths due to nonideal impedance environments and added infrastructure for impedance matching. A future architecture using multiplexed all-pass readout resonators would avoid the need for intentional mismatch and potentially improve the scaling prospects of quantum computers. As a proof-of-concept demonstration of “all-pass readout,” we design and fabricate an all-pass readout resonator that demonstrates insertion loss below 1.17 dB at the readout frequency and a maximum insertion loss of 1.53 dB across its full bandwidth for the lowest three states of a transmon qubit. We demonstrate qubit readout with an average single-shot fidelity of 98.1% in 600 ns; to assess the effect of larger dispersive shift, we implement a shelving protocol and achieve a fidelity of 99.0% in 300 ns.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.