Topology-based parametric modeling of three-dimensional hexagonal braids for advanced composite structures

IF 1.6 4区 工程技术 Q2 MATERIALS SCIENCE, TEXTILES Textile Research Journal Pub Date : 2024-08-19 DOI:10.1177/00405175241257723
Chengwei Ren, Xiaobo Gong, Zong Liu, Jinyu Li, Fang Xie, Fei Jia, Tao Zhang
{"title":"Topology-based parametric modeling of three-dimensional hexagonal braids for advanced composite structures","authors":"Chengwei Ren, Xiaobo Gong, Zong Liu, Jinyu Li, Fang Xie, Fei Jia, Tao Zhang","doi":"10.1177/00405175241257723","DOIUrl":null,"url":null,"abstract":"Three-dimensional hexagonal braiding technology is an advanced method with significant potential for producing geometrically complex, large-scale braided fabrics. However, efficient geometric modeling of such intricate braid architectures remains challenging. This article presents a topology-based parametric modeling framework to effectively link three-dimensional hexagonal braiding process parameters to resultant fabric structures. The core innovation is a modeling tool that swiftly generates the yarn network topology and complete three-dimensional geometry of braids based on specified production conditions without restrictions on the number of layers. We utilize this tool to simulate diverse braiding patterns and systematically assess the influence of key process variables on the emerging fabric configuration. We identify a unit cell motif in multilayered versions that may provide insights into mechanical properties. Then, to extend the tool’s utility, we introduce a novel concentric circle projection technique that enables structural modeling of hollow three-dimensional hexagonal braided tubes critical for high-performance composites. The versatility of this parameterization scheme could bolster the development of novel braid-derived engineering materials. Finally, tubular braided preforms and lamellar braided preforms were produced to verify the accuracy of the parametric modeling algorithm.","PeriodicalId":22323,"journal":{"name":"Textile Research Journal","volume":"8 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textile Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00405175241257723","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional hexagonal braiding technology is an advanced method with significant potential for producing geometrically complex, large-scale braided fabrics. However, efficient geometric modeling of such intricate braid architectures remains challenging. This article presents a topology-based parametric modeling framework to effectively link three-dimensional hexagonal braiding process parameters to resultant fabric structures. The core innovation is a modeling tool that swiftly generates the yarn network topology and complete three-dimensional geometry of braids based on specified production conditions without restrictions on the number of layers. We utilize this tool to simulate diverse braiding patterns and systematically assess the influence of key process variables on the emerging fabric configuration. We identify a unit cell motif in multilayered versions that may provide insights into mechanical properties. Then, to extend the tool’s utility, we introduce a novel concentric circle projection technique that enables structural modeling of hollow three-dimensional hexagonal braided tubes critical for high-performance composites. The versatility of this parameterization scheme could bolster the development of novel braid-derived engineering materials. Finally, tubular braided preforms and lamellar braided preforms were produced to verify the accuracy of the parametric modeling algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于拓扑的先进复合材料结构三维六角编织参数建模
三维六角编织技术是一种先进的方法,在生产几何结构复杂的大型编织物方面具有巨大潜力。然而,这种复杂编织结构的高效几何建模仍具有挑战性。本文介绍了一种基于拓扑的参数建模框架,可有效地将三维六角编织工艺参数与最终织物结构联系起来。其核心创新是一种建模工具,可根据指定的生产条件快速生成纱线网络拓扑结构和完整的三维编织几何结构,而不受层数限制。我们利用这一工具模拟了各种编织模式,并系统地评估了关键工艺变量对新出现的织物结构的影响。我们确定了多层版本中的单元格图案,该图案可能有助于深入了解机械性能。然后,为了扩展该工具的实用性,我们引入了一种新颖的同心圆投影技术,该技术可对高性能复合材料中至关重要的中空三维六边形编织管进行结构建模。这种参数化方案的多功能性可促进新型编织工程材料的开发。最后,还制作了管状编织预型件和片状编织预型件,以验证参数建模算法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Textile Research Journal
Textile Research Journal 工程技术-材料科学:纺织
CiteScore
4.00
自引率
21.70%
发文量
309
审稿时长
1.5 months
期刊介绍: The Textile Research Journal is the leading peer reviewed Journal for textile research. It is devoted to the dissemination of fundamental, theoretical and applied scientific knowledge in materials, chemistry, manufacture and system sciences related to fibers, fibrous assemblies and textiles. The Journal serves authors and subscribers worldwide, and it is selective in accepting contributions on the basis of merit, novelty and originality.
期刊最新文献
A review of deep learning and artificial intelligence in dyeing, printing and finishing A review of deep learning within the framework of artificial intelligence for enhanced fiber and yarn quality Reconstructing hyperspectral images of textiles from a single RGB image utilizing the multihead self-attention mechanism Study on the thermo-physiological comfort properties of cotton/polyester combination yarn-based double-layer knitted fabrics Study on the relationship between blending uniformity and yarn performance of blended yarn
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1