A robust unsupervised clustering approach for high-dimensional biological imaging data reveals shared drug-induced morphological signatures

Shaine Chenxin Bao, Dalia Mizikovsky, Kathleen Pishas, Qiongyi Zhao, Karla J Cowley, Evanny Marinovic, Mark Carey, Ian Campbell, Kaylene J Simpson, Dane Cheasley, Nathan Palpant
{"title":"A robust unsupervised clustering approach for high-dimensional biological imaging data reveals shared drug-induced morphological signatures","authors":"Shaine Chenxin Bao, Dalia Mizikovsky, Kathleen Pishas, Qiongyi Zhao, Karla J Cowley, Evanny Marinovic, Mark Carey, Ian Campbell, Kaylene J Simpson, Dane Cheasley, Nathan Palpant","doi":"10.1101/2024.09.05.611300","DOIUrl":null,"url":null,"abstract":"High-throughput analysis methods have emerged as central technologies to accelerate discovery through scalable generation of large-scale data. Analysis of these datasets remains challenging due to limitations in computational approaches for dimensionality reduction. Here, we present UnTANGLeD, a versatile computational pipeline that prioritises biologically robust and meaningful information to guide actionable strategies from input screening data which we demonstrate using results from image-based drug screening. By providing a robust framework for analysing high dimensional biological data, UnTANGLeD offers a powerful tool for analysis of theoretically any data type from any screening platform.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"416 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.611300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-throughput analysis methods have emerged as central technologies to accelerate discovery through scalable generation of large-scale data. Analysis of these datasets remains challenging due to limitations in computational approaches for dimensionality reduction. Here, we present UnTANGLeD, a versatile computational pipeline that prioritises biologically robust and meaningful information to guide actionable strategies from input screening data which we demonstrate using results from image-based drug screening. By providing a robust framework for analysing high dimensional biological data, UnTANGLeD offers a powerful tool for analysis of theoretically any data type from any screening platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对高维生物成像数据的鲁棒无监督聚类方法揭示了药物诱导的共同形态特征
高通量分析方法已成为通过可扩展的大规模数据生成来加速发现的核心技术。由于降维计算方法的局限性,对这些数据集的分析仍然具有挑战性。在这里,我们介绍了 UnTANGLeD,这是一种多功能计算管道,可优先处理生物稳健性和有意义的信息,以指导从输入筛选数据中得出可操作的策略,我们使用基于图像的药物筛选结果进行了演示。UnTANGLeD 为分析高维生物数据提供了一个强大的框架,为理论上分析来自任何筛选平台的任何数据类型提供了一个强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECSFinder: Optimized prediction of evolutionarily conserved RNA secondary structures from genome sequences GeneSpectra: a method for context-aware comparison of cell type gene expression across species A Bioinformatician, Computer Scientist, and Geneticist lead bioinformatic tool development - which one is better? Interpretable high-resolution dimension reduction of spatial transcriptomics data by DeepFuseNMF Pangenomics to understand prophage dynamics in the Pectobacterium genus and the radiating lineages of P. brasiliense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1