Privacy-preserving decentralized learning methods for biomedical applications

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Computational and structural biotechnology journal Pub Date : 2024-08-30 DOI:10.1016/j.csbj.2024.08.024
Mohammad Tajabadi, Roman Martin, Dominik Heider
{"title":"Privacy-preserving decentralized learning methods for biomedical applications","authors":"Mohammad Tajabadi, Roman Martin, Dominik Heider","doi":"10.1016/j.csbj.2024.08.024","DOIUrl":null,"url":null,"abstract":"In recent years, decentralized machine learning has emerged as a significant advancement in biomedical applications, offering robust solutions for data privacy, security, and collaboration across diverse healthcare environments. In this review, we examine various decentralized learning methodologies, including federated learning, split learning, swarm learning, gossip learning, edge learning, and some of their applications in the biomedical field. We delve into the underlying principles, network topologies, and communication strategies of each approach, highlighting their advantages and limitations. Ultimately, the selection of a suitable method should be based on specific needs, infrastructures, and computational capabilities.","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2024.08.024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, decentralized machine learning has emerged as a significant advancement in biomedical applications, offering robust solutions for data privacy, security, and collaboration across diverse healthcare environments. In this review, we examine various decentralized learning methodologies, including federated learning, split learning, swarm learning, gossip learning, edge learning, and some of their applications in the biomedical field. We delve into the underlying principles, network topologies, and communication strategies of each approach, highlighting their advantages and limitations. Ultimately, the selection of a suitable method should be based on specific needs, infrastructures, and computational capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学应用中的隐私保护分散学习方法
近年来,分散式机器学习已成为生物医学应用领域的一大进步,为数据隐私、安全和不同医疗环境中的协作提供了强大的解决方案。在这篇综述中,我们将探讨各种分散学习方法,包括联合学习、分裂学习、蜂群学习、八卦学习、边缘学习,以及它们在生物医学领域的一些应用。我们深入探讨了每种方法的基本原理、网络拓扑结构和通信策略,强调了它们的优势和局限性。最终,应根据具体需求、基础设施和计算能力来选择合适的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
期刊最新文献
Corrigendum to "Cryo-EM reveals architectural diversity in active rotavirus particles" [Comput Struct Biotechnol J 31 (17) (2019) 1178-1183]. Spatial domains identification in spatial transcriptomics using modality-aware and subspace-enhanced graph contrastive learning. A systematic review on the state-of-the-art and research gaps regarding inorganic and carbon-based multicomponent and high-aspect ratio nanomaterials EEfinder, a general purpose tool for identification of bacterial and viral endogenized elements in eukaryotic genomes. Using patient-generated health data more efficient and effectively to facilitate the implementation of value-based healthcare in the EU – Innovation report
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1