{"title":"Influence of microalloying element vanadium on microstructure and mechanical properties of anchor steel","authors":"Zhen Zhang, Hang Liu, Chao-yun Yang, Zhen Zhang, Xiao-wei Chu, Yi-kun Luan, Xing Li, Lu-han Hao, Xing-zhong Zhang","doi":"10.1007/s42243-024-01319-x","DOIUrl":null,"url":null,"abstract":"<p>The effect of vanadium (V) element on the microstructure and mechanical properties of anchor steel was explored by microstructural characterization and mechanical property tests of anchor steels with different V contents. The results indicated that the trace addition of V element can generate dispersed VC nanoparticles in the anchor steel and then refine microstructure by inhibiting austenite grain growth. The increase in V content leads to the formation of a larger amount of smaller VC nanoparticles and more refined microstructure. Moreover, the increasing V content in anchor steel causes the volume fraction of ferrite to increase and that of pearlite to decrease continuously, and even leads to the formation of bainite. Accompanied by the microstructure change, the V-treated anchor steels exhibit higher strength compared with the anchor steel without V addition. However, the increased hardness difference between ferrite and pearlite results in poor coordination of deformation between them, leading to a decrease in their plasticity. The impact toughness of anchor steel first increases but then significantly decreases with the increase in V content. The improvement in impact toughness of trace V-treated anchor steel benefits from the enhancement in the band structure after hot rolling, which consumes more energy during the vertical crack propagation process. However, when the V content further increases, the hard and brittle bainite in the anchor steel can facilitate crack initiation and propagation, ultimately resulting in a reduced toughness.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"14 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01319-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of vanadium (V) element on the microstructure and mechanical properties of anchor steel was explored by microstructural characterization and mechanical property tests of anchor steels with different V contents. The results indicated that the trace addition of V element can generate dispersed VC nanoparticles in the anchor steel and then refine microstructure by inhibiting austenite grain growth. The increase in V content leads to the formation of a larger amount of smaller VC nanoparticles and more refined microstructure. Moreover, the increasing V content in anchor steel causes the volume fraction of ferrite to increase and that of pearlite to decrease continuously, and even leads to the formation of bainite. Accompanied by the microstructure change, the V-treated anchor steels exhibit higher strength compared with the anchor steel without V addition. However, the increased hardness difference between ferrite and pearlite results in poor coordination of deformation between them, leading to a decrease in their plasticity. The impact toughness of anchor steel first increases but then significantly decreases with the increase in V content. The improvement in impact toughness of trace V-treated anchor steel benefits from the enhancement in the band structure after hot rolling, which consumes more energy during the vertical crack propagation process. However, when the V content further increases, the hard and brittle bainite in the anchor steel can facilitate crack initiation and propagation, ultimately resulting in a reduced toughness.
通过对不同钒元素含量的锚杆钢进行微观结构表征和力学性能测试,探讨了钒元素对锚杆钢微观结构和力学性能的影响。结果表明,钒元素的微量添加可在锚杆钢中生成分散的钒碳纳米颗粒,并通过抑制奥氏体晶粒长大来细化微观结构。随着 V 元素含量的增加,会形成更多更小的 VC 纳米颗粒,微观组织也会更加细化。此外,随着锚钢中 V 含量的增加,铁素体的体积分数不断增加,珠光体的体积分数不断降低,甚至形成贝氏体。伴随着微观结构的变化,与未添加 V 的锚固钢相比,经过 V 处理的锚固钢具有更高的强度。然而,由于铁素体和珠光体之间的硬度差异增大,它们之间的变形协调性变差,导致塑性降低。随着 V 含量的增加,锚固钢的冲击韧性先是增加,然后又显著下降。微量 V 处理锚杆钢冲击韧性的提高得益于热轧后带状结构的增强,这在垂直裂纹扩展过程中消耗了更多的能量。然而,当 V 含量进一步增加时,锚杆钢中的硬脆贝氏体会促进裂纹的产生和扩展,最终导致韧性降低。
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..