Isothermal reduction kinetics and reduction prediction for iron ore pellets

Fei Meng, Hao Liu, Yue-lin Qin, Huang-jie Hua, Yin Deng, Ze-zheng Sun, Long-hai Liu
{"title":"Isothermal reduction kinetics and reduction prediction for iron ore pellets","authors":"Fei Meng, Hao Liu, Yue-lin Qin, Huang-jie Hua, Yin Deng, Ze-zheng Sun, Long-hai Liu","doi":"10.1007/s42243-024-01294-3","DOIUrl":null,"url":null,"abstract":"<p>Iron ore pellets, as one of the main charges of blast furnaces, have a greater impact on the CO<sub>2</sub> emission reduction and stable operation of blast furnaces. The isothermal reduction behavior of the pellets obtained from a Chinese steel plant was studied in the gas mixtures of CO and N<sub>2</sub>. The results showed the reduction process is divided into two stages. The reduction in the initial stage (time <i>t</i> ≤ 40 min) is cooperatively controlled by internal diffusion and interface chemical reactions with the activation energy of 30.19 and 16.67 kJ/mol, respectively. The controlling step of the reduction in the final stage (<i>t</i> &gt; 40 min) is internal diffusion with the activation energy of 34.60 kJ/mol. The reduction process can be described by two equations obtained from kinetic calculations. The reduction degree can be predicted under different temperatures and time, and the predicted results showed an excellent correlation with the experimental results. The reduction mechanisms were confirmed by the analysis of the scanning electron microscope equipped with an energy dispersive spectrometer and optical microscope.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01294-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Iron ore pellets, as one of the main charges of blast furnaces, have a greater impact on the CO2 emission reduction and stable operation of blast furnaces. The isothermal reduction behavior of the pellets obtained from a Chinese steel plant was studied in the gas mixtures of CO and N2. The results showed the reduction process is divided into two stages. The reduction in the initial stage (time t ≤ 40 min) is cooperatively controlled by internal diffusion and interface chemical reactions with the activation energy of 30.19 and 16.67 kJ/mol, respectively. The controlling step of the reduction in the final stage (t > 40 min) is internal diffusion with the activation energy of 34.60 kJ/mol. The reduction process can be described by two equations obtained from kinetic calculations. The reduction degree can be predicted under different temperatures and time, and the predicted results showed an excellent correlation with the experimental results. The reduction mechanisms were confirmed by the analysis of the scanning electron microscope equipped with an energy dispersive spectrometer and optical microscope.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁矿球团的等温还原动力学和还原预测
铁矿球团作为高炉的主要炉料之一,对高炉的二氧化碳减排和稳定运行影响较大。研究了中国某钢铁厂获得的球团矿在 CO 和 N2 混合气体中的等温还原行为。结果表明,还原过程分为两个阶段。初始阶段(时间 t ≤ 40 分钟)的还原受内部扩散和界面化学反应的协同控制,活化能分别为 30.19 和 16.67 kJ/mol。最后阶段(t > 40 分钟)还原的控制步骤是内部扩散,活化能为 34.60 kJ/mol。还原过程可以用动力学计算得到的两个方程式来描述。可以预测不同温度和时间下的还原程度,预测结果与实验结果有很好的相关性。配备了能量色散光谱仪和光学显微镜的扫描电子显微镜分析证实了还原机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
16.00%
发文量
161
审稿时长
2.8 months
期刊介绍: Publishes critically reviewed original research of archival significance Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..
期刊最新文献
Enhanced steelmaking cost optimization and real-time alloying element yield prediction: a ferroalloy model based on machine learning and linear programming Effect of Zr on microstructure and mechanical properties of 304 stainless steel joints brazed by Ag–Cu–Sn–In filler metal Effect of reaction time on interaction between steel with and without La and MgO–C refractory Mechanical behavior of GH4720Li nickel-based alloy at intermediate temperature for different strain rates Corrosion and passive behavior of SLM and wrought TA15 titanium alloys in hydrochloric acid solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1