sabinaNSDM: An R package for spatially nested hierarchical species distribution modelling

IF 6.3 2区 环境科学与生态学 Q1 ECOLOGY Methods in Ecology and Evolution Pub Date : 2024-09-12 DOI:10.1111/2041-210X.14417
Rubén G. Mateo, Jennifer Morales-Barbero, Alejandra Zarzo-Arias, Herlander Lima, Virgilio Gómez-Rubio, Teresa Goicolea
{"title":"sabinaNSDM: An R package for spatially nested hierarchical species distribution modelling","authors":"Rubén G. Mateo,&nbsp;Jennifer Morales-Barbero,&nbsp;Alejandra Zarzo-Arias,&nbsp;Herlander Lima,&nbsp;Virgilio Gómez-Rubio,&nbsp;Teresa Goicolea","doi":"10.1111/2041-210X.14417","DOIUrl":null,"url":null,"abstract":"<p>\n \n </p>","PeriodicalId":208,"journal":{"name":"Methods in Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.14417","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.14417","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
sabinaNSDM:用于空间嵌套分层物种分布建模的 R 软件包
物种分布模型的发展结合了物种与环境在多个尺度上的相互作用。空间嵌套层次模型(NSDMs)通过整合从大尺度到小尺度的数据集和预测模型,提供了一个很有前景的途径。但是,一个用户友好的工具来执行这些模型仍然是一个重要的持续挑战。为了弥补这一不足,我们引入了 sabinaNSDM R 软件包,它提供了一种开发 NSDM 的直接方法。该软件包将捕捉广泛生态位的全球尺度模型与具有高分辨率协变量的区域尺度模型合并在一起,形成一个统一的分层建模框架。sabinaNSDM 简化了数据准备、校准、整合以及跨两个尺度模型的预测。它能自动(如有必要)生成背景点、物种出现和缺失(如有)数据的空间稀疏化、协变量选择和生成 NSDM。本文概述了集成到 sabinaNSDM 软件包中的工作流程和功能,并以一个涉及 76 种树种的应用案例研究作为补充。与之前发表的文章一致,生成的 NSDMs 有助于精确预测当前和未来环境情景下的物种分布(通过独立评估得出的平均 AUC 值高于 0.88)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.60
自引率
3.00%
发文量
236
审稿时长
4-8 weeks
期刊介绍: A British Ecological Society journal, Methods in Ecology and Evolution (MEE) promotes the development of new methods in ecology and evolution, and facilitates their dissemination and uptake by the research community. MEE brings together papers from previously disparate sub-disciplines to provide a single forum for tracking methodological developments in all areas. MEE publishes methodological papers in any area of ecology and evolution, including: -Phylogenetic analysis -Statistical methods -Conservation & management -Theoretical methods -Practical methods, including lab and field -This list is not exhaustive, and we welcome enquiries about possible submissions. Methods are defined in the widest terms and may be analytical, practical or conceptual. A primary aim of the journal is to maximise the uptake of techniques by the community. We recognise that a major stumbling block in the uptake and application of new methods is the accessibility of methods. For example, users may need computer code, example applications or demonstrations of methods.
期刊最新文献
Spatially explicit predictions using spatial eigenvector maps Cover Picture and Issue Information ChatGPT is likely reducing opportunity for support, friendship and learned kindness in research Should we still teach or learn coding? A postgraduate student perspective on the use of large language models for coding in ecology and evolution Pressure to publish introduces large-language model risks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1