Super-resolution of spin configurations based on flow-based generative models

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL Journal of Physics A: Mathematical and Theoretical Pub Date : 2024-09-02 DOI:10.1088/1751-8121/ad72ba
Kenta Shiina, Hiroyuki Mori, Yutaka Okabe, Hwee Kuan Lee
{"title":"Super-resolution of spin configurations based on flow-based generative models","authors":"Kenta Shiina, Hiroyuki Mori, Yutaka Okabe, Hwee Kuan Lee","doi":"10.1088/1751-8121/ad72ba","DOIUrl":null,"url":null,"abstract":"We present a super-resolution method for spin systems using a flow-based generative model that is a deep generative model with reversible neural network architecture. Starting from spin configurations on a two-dimensional square lattice, our model generates spin configurations of a larger lattice. As a flow-based generative model precisely estimates the distribution of the generated configurations, it can be combined with Monte Carlo simulation to generate large lattice configurations according to the Boltzmann distribution. Hence, the long-range correlation on a large configuration is reduced into the shorter one through the flow-based generative model. This alleviates the critical slowing down near the critical temperature. We demonstrated an 8 times increased lattice size in the linear dimensions using our super-resolution scheme repeatedly. We numerically show that by performing simulations for <inline-formula>\n<tex-math><?CDATA $16\\times 16$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>16</mml:mn><mml:mo>×</mml:mo><mml:mn>16</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"aad72baieqn1.gif\"></inline-graphic></inline-formula> configurations, our model can sample lattice configurations at <inline-formula>\n<tex-math><?CDATA $128\\times 128$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>128</mml:mn><mml:mo>×</mml:mo><mml:mn>128</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"aad72baieqn2.gif\"></inline-graphic></inline-formula> on which the thermal average of physical quantities has good agreement with the one evaluated by the traditional Metropolis–Hasting Monte Carlo simulation.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"6 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad72ba","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a super-resolution method for spin systems using a flow-based generative model that is a deep generative model with reversible neural network architecture. Starting from spin configurations on a two-dimensional square lattice, our model generates spin configurations of a larger lattice. As a flow-based generative model precisely estimates the distribution of the generated configurations, it can be combined with Monte Carlo simulation to generate large lattice configurations according to the Boltzmann distribution. Hence, the long-range correlation on a large configuration is reduced into the shorter one through the flow-based generative model. This alleviates the critical slowing down near the critical temperature. We demonstrated an 8 times increased lattice size in the linear dimensions using our super-resolution scheme repeatedly. We numerically show that by performing simulations for 16×16 configurations, our model can sample lattice configurations at 128×128 on which the thermal average of physical quantities has good agreement with the one evaluated by the traditional Metropolis–Hasting Monte Carlo simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于流生成模型的自旋构型超级分辨率
我们提出了一种自旋系统的超分辨率方法,该方法采用基于流的生成模型,是一种具有可逆神经网络架构的深度生成模型。我们的模型从二维方格上的自旋配置开始,生成更大网格的自旋配置。由于基于流的生成模型可以精确估计生成配置的分布,因此它可以与蒙特卡罗模拟相结合,根据玻尔兹曼分布生成大晶格配置。因此,通过基于流的生成模型,大型构型上的长程相关性被降低为短程相关性。这缓解了临界温度附近的临界减速。我们反复使用我们的超分辨率方案,证明在线性维度上晶格尺寸增加了 8 倍。我们的数值结果表明,通过对 16×16 配置进行模拟,我们的模型可以采样 128×128 的晶格配置,在这种配置上,物理量的热平均值与传统 Metropolis-Hasting 蒙特卡洛模拟所评估的热平均值非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
期刊最新文献
Laplacian operator and its square lattice discretization: Green function vs. Lattice Green function for the flat 2-torus and other related 2D manifolds The role of mobility in epidemics near criticality Projected state ensemble of a generic model of many-body quantum chaos Quantising a Hamiltonian curl force Operator dynamics and entanglement in space-time dual Hadamard lattices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1