{"title":"Generalized parity-oblivious communication games powered by quantum preparation contextuality","authors":"Prabuddha Roy, A K Pan","doi":"10.1088/1751-8121/ad7108","DOIUrl":null,"url":null,"abstract":"The parity-oblivious random-access-code (PORAC) is a class of communication games involving a sender (Alice) and a receiver (Bob). In such games, Alice’s amount of communication to Bob is constraint by the parity-oblivious (PO) conditions, so that the parity information of her inputs remains oblivious to Bob. The PO condition in an operational theory is equivalently represented in an ontological model that satisfies the preparation noncontextuality. In this paper, we provide a nontrivial generalization of the existing two-level PORAC and derive the winning probability of the game in the preparation noncontextual ontological model. We demonstrate that the quantum theory outperforms the preparation noncontextual model by predicting higher winning probability in our generalized PORAC.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"5 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad7108","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The parity-oblivious random-access-code (PORAC) is a class of communication games involving a sender (Alice) and a receiver (Bob). In such games, Alice’s amount of communication to Bob is constraint by the parity-oblivious (PO) conditions, so that the parity information of her inputs remains oblivious to Bob. The PO condition in an operational theory is equivalently represented in an ontological model that satisfies the preparation noncontextuality. In this paper, we provide a nontrivial generalization of the existing two-level PORAC and derive the winning probability of the game in the preparation noncontextual ontological model. We demonstrate that the quantum theory outperforms the preparation noncontextual model by predicting higher winning probability in our generalized PORAC.
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.