Heterogenous Dynamics of Diffusive Motion in Organic Ionic Plastic Crystal Studied Using Spin-Spin Relaxation Time: N, N-Diethylpyrrolidinium Bis(fluorosulfonyl)amide
{"title":"Heterogenous Dynamics of Diffusive Motion in Organic Ionic Plastic Crystal Studied Using Spin-Spin Relaxation Time: N, N-Diethylpyrrolidinium Bis(fluorosulfonyl)amide","authors":"Keiko Nishikawa, Kozo Fujii, Kazuhiko Matsumoto, Hiroshi Abe, Masahiro Yoshizawa-Fujita","doi":"10.1093/bulcsj/uoae088","DOIUrl":null,"url":null,"abstract":"The temperature dependences of the spin–spin relaxation times (T2) of 1H and 19F nuclei were measured for N, N-diethylpyrrolidinium bis(fluorosulfonyl)amide with a plastic crystal (PC) phase. In the PC phase, two types of T2 were observed in both 1H and 19F experiments, which was considered to be the appearance of heterogeneous dynamics of diffusive motion. By examining temperature dependences of the T2 values and the existence ratios, the following conclusions were reached. (1) The prepared PC sample was in a polycrystalline state, and each crystallite comprised two phases: the core phase (PC phase) and the surface phase formed to relieve surface stress. (2) The 1H-T2 (19F-T2) values of the two phases differed, and ions in the surface phase were more mobile. The 1H-T2 (19F-T2) values for the two phases increased with temperature rise. In particular, the 1H-T2 (19F-T2) values of the surface phase were smoothly connected to the liquid T2 values. (3) The cations and anions exhibited a cooperative diffusive motion. (4) When the temperature was considerably lower than the melting point, the ratio of the surface phase did not significantly differ from when it first formed. However, it rapidly increased near the melting point and became liquid.","PeriodicalId":9511,"journal":{"name":"Bulletin of the Chemical Society of Japan","volume":"46 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Chemical Society of Japan","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/bulcsj/uoae088","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The temperature dependences of the spin–spin relaxation times (T2) of 1H and 19F nuclei were measured for N, N-diethylpyrrolidinium bis(fluorosulfonyl)amide with a plastic crystal (PC) phase. In the PC phase, two types of T2 were observed in both 1H and 19F experiments, which was considered to be the appearance of heterogeneous dynamics of diffusive motion. By examining temperature dependences of the T2 values and the existence ratios, the following conclusions were reached. (1) The prepared PC sample was in a polycrystalline state, and each crystallite comprised two phases: the core phase (PC phase) and the surface phase formed to relieve surface stress. (2) The 1H-T2 (19F-T2) values of the two phases differed, and ions in the surface phase were more mobile. The 1H-T2 (19F-T2) values for the two phases increased with temperature rise. In particular, the 1H-T2 (19F-T2) values of the surface phase were smoothly connected to the liquid T2 values. (3) The cations and anions exhibited a cooperative diffusive motion. (4) When the temperature was considerably lower than the melting point, the ratio of the surface phase did not significantly differ from when it first formed. However, it rapidly increased near the melting point and became liquid.
期刊介绍:
The Bulletin of the Chemical Society of Japan (BCSJ) is devoted to the publication of scientific research papers in the fields of Theoretical and Physical Chemistry, Analytical and Inorganic Chemistry, Organic and Biological Chemistry, and Applied and Materials Chemistry. BCSJ appears as a monthly journal online and in advance with three kinds of papers (Accounts, Articles, and Short Articles) describing original research. The purpose of BCSJ is to select and publish the most important papers with the broadest significance to the chemistry community in general. The Chemical Society of Japan hopes all visitors will notice the usefulness of our journal and the abundance of topics, and welcomes more submissions from scientists all over the world.