An Edge Computing-Based Solution for Real-Time Leaf Disease Classification Using Thermal Imaging

Públio Elon Correa da Silva;Jurandy Almeida
{"title":"An Edge Computing-Based Solution for Real-Time Leaf Disease Classification Using Thermal Imaging","authors":"Públio Elon Correa da Silva;Jurandy Almeida","doi":"10.1109/LGRS.2024.3456637","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) technologies can transform agriculture by improving crop health monitoring and management, thus improving food safety. In this letter, we explore the potential of edge computing (EC) for real-time classification of leaf diseases using thermal imaging. We present a thermal image dataset for plant disease classification and evaluate DL models, including InceptionV3, MobileNetV1, MobileNetV2, and VGG-16, on resource-constrained devices like the Raspberry Pi 4B. Using pruning and quantization-aware training, these models achieve inference times up to \n<inline-formula> <tex-math>$1.48\\times $ </tex-math></inline-formula>\n faster on Edge TPU Max for VGG16, and up to \n<inline-formula> <tex-math>$2.13\\times $ </tex-math></inline-formula>\n faster with precision reduction on Intel NCS2 for MobileNetV1, compared with high-end GPUs like RTX 3090, while maintaining state-of-the-art accuracy.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669595/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning (DL) technologies can transform agriculture by improving crop health monitoring and management, thus improving food safety. In this letter, we explore the potential of edge computing (EC) for real-time classification of leaf diseases using thermal imaging. We present a thermal image dataset for plant disease classification and evaluate DL models, including InceptionV3, MobileNetV1, MobileNetV2, and VGG-16, on resource-constrained devices like the Raspberry Pi 4B. Using pruning and quantization-aware training, these models achieve inference times up to $1.48\times $ faster on Edge TPU Max for VGG16, and up to $2.13\times $ faster with precision reduction on Intel NCS2 for MobileNetV1, compared with high-end GPUs like RTX 3090, while maintaining state-of-the-art accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于边缘计算的热成像叶病实时分类解决方案
深度学习(DL)技术可以通过改善作物健康监测和管理来改变农业,从而提高食品安全。在这封信中,我们探讨了边缘计算(EC)在利用热成像对叶片病害进行实时分类方面的潜力。我们提出了一个用于植物病害分类的热图像数据集,并在 Raspberry Pi 4B 等资源受限的设备上评估了 DL 模型,包括 InceptionV3、MobileNetV1、MobileNetV2 和 VGG-16。与 RTX 3090 等高端 GPU 相比,利用剪枝和量化感知训练,这些模型在 Edge TPU Max 上的推理时间比 VGG16 快达 1.48 倍,在英特尔 NCS2 上的精度降低后,MobileNetV1 的推理时间比 VGG16 快达 2.13 倍,同时保持了最先进的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Downsampling and Scale Enhanced Detection Head for Tiny Object Detection in Remote Sensing Image Graph Feature Representation for Shadow-Assisted Moving Target Tracking in Video SAR High-Resolution Remote Sensing Farmland Extraction Network Based on Dense-Feature Overlay Fusion and Information Homogeneity Enhancement Seg-CycleGAN: SAR-to-Optical Image Translation Guided by a Downstream Task A Target Recognition Algorithm Based on Multi-Incidence Angle SAR Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1