Green Analytical Method for Perfluorocarboxylic Acids (PFCAs) in Water of Stir Bar Sorptive Extraction Coupled with Thermal Desorption–Gas Chromatography—Mass Spectroscopy

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water Pub Date : 2024-09-08 DOI:10.3390/w16172543
Ahsan Habib, Elizabeth Noriega Landa, Kiana L. Holbrook, Angelica A. Chacon, Wen-Yee Lee
{"title":"Green Analytical Method for Perfluorocarboxylic Acids (PFCAs) in Water of Stir Bar Sorptive Extraction Coupled with Thermal Desorption–Gas Chromatography—Mass Spectroscopy","authors":"Ahsan Habib, Elizabeth Noriega Landa, Kiana L. Holbrook, Angelica A. Chacon, Wen-Yee Lee","doi":"10.3390/w16172543","DOIUrl":null,"url":null,"abstract":"Perfluoroalkyl carboxylic acids (PFCAs) are a significant group of per- and polyfluoroalkyl substances (PFASs). They are persistent organic chemicals manufactured for their resistance to heat, water, and stains. PFCAs are ubiquitous in the environment, particularly in surface water and wastewater, because they are widely used in everyday consumer products. This contamination poses a risk to drinking water supplies and human health, necessitating sensitive and effective analytical methods. Traditional liquid chromatography–tandem mass spectrometry (LC-MS/MS) is commonly used but involves complex sample handling and high costs. In this study, we developed an enhanced stir bar sorptive extraction (SBSE) method coupled with thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS) for the analysis of PFCAs in water. This method demonstrates linearity, with R2 values from 0.9892 to 0.9988, and low limits of detection (LOD) between 21.17 ng/L and 73.96 ng/L. Recovery rates varied from 47 to 97%, suggesting efficient extraction. Compared to traditional methods, the developed SBSE technique requires only a 1 mL sample volume and minimal amounts of solvents, enhancing eco-friendliness and reducing potential contamination and handling errors. This method also demonstrated good precision and robustness across various water matrices. Overall, the developed method offers a precise, eco-friendly, and reliable approach for analyzing PFCAs in diverse water samples.","PeriodicalId":23788,"journal":{"name":"Water","volume":"14 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16172543","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Perfluoroalkyl carboxylic acids (PFCAs) are a significant group of per- and polyfluoroalkyl substances (PFASs). They are persistent organic chemicals manufactured for their resistance to heat, water, and stains. PFCAs are ubiquitous in the environment, particularly in surface water and wastewater, because they are widely used in everyday consumer products. This contamination poses a risk to drinking water supplies and human health, necessitating sensitive and effective analytical methods. Traditional liquid chromatography–tandem mass spectrometry (LC-MS/MS) is commonly used but involves complex sample handling and high costs. In this study, we developed an enhanced stir bar sorptive extraction (SBSE) method coupled with thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS) for the analysis of PFCAs in water. This method demonstrates linearity, with R2 values from 0.9892 to 0.9988, and low limits of detection (LOD) between 21.17 ng/L and 73.96 ng/L. Recovery rates varied from 47 to 97%, suggesting efficient extraction. Compared to traditional methods, the developed SBSE technique requires only a 1 mL sample volume and minimal amounts of solvents, enhancing eco-friendliness and reducing potential contamination and handling errors. This method also demonstrated good precision and robustness across various water matrices. Overall, the developed method offers a precise, eco-friendly, and reliable approach for analyzing PFCAs in diverse water samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
搅拌棒吸附萃取与热脱附-气相色谱-质谱联用的水中全氟羧酸 (PFCAs) 绿色分析方法
全氟烷基羧酸(PFCAs)是全氟烷基和多氟烷基物质(PFAS)中的一个重要类别。全氟烷基羧酸是一类重要的全氟烷基和多氟烷基物质(PFASs),它们是以耐热、耐水和耐污而制造的持久性有机化学品。全氟辛烷磺酸在环境中无处不在,尤其是在地表水和废水中,因为它们被广泛应用于日常消费品中。这种污染对饮用水供应和人类健康构成了威胁,因此需要采用灵敏有效的分析方法。传统的液相色谱-串联质谱法(LC-MS/MS)是常用的方法,但涉及复杂的样品处理和高昂的成本。在这项研究中,我们开发了一种增强型搅拌棒吸附萃取(SBSE)方法,并将其与热脱附-气相色谱-质谱联用(TD-GC-MS),用于分析水中的全氟辛烷磺酸。该方法线性关系良好,R2 值在 0.9892 至 0.9988 之间,检出限(LOD)较低,在 21.17 纳克/升至 73.96 纳克/升之间。回收率在 47% 至 97% 之间,表明提取效率高。与传统方法相比,所开发的 SBSE 技术只需 1 mL 样品量和极少量的溶剂,从而提高了生态友好性并减少了潜在的污染和处理错误。该方法还在各种水基质中表现出良好的精度和稳健性。总之,所开发的方法为分析各种水样中的全氟辛烷磺酸提供了一种精确、环保和可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water
Water WATER RESOURCES-
CiteScore
5.80
自引率
14.70%
发文量
3491
审稿时长
19.85 days
期刊介绍: Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
EstuarySAT Database Development of Harmonized Remote Sensing and Water Quality Data for Tidal and Estuarine Systems. Study on Large-Scale Urban Water Distribution Network Computation Method Based on a GPU Framework Land-Use Pattern-Based Spatial Variation of Physicochemical Parameters and Efficacy of Safe Drinking Water Supply along the Mahaweli River, Sri Lanka Ensuring the Safety of an Extraction Well from an Upgradient Point Source of Pollution in a Computationally Constrained Setting The Impact of Catastrophic Floods on Macroinvertebrate Communities in Low-Order Streams: A Study from the Apennines (Northwest Italy)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1