Application of Immobilized Microorganism Gel Beads in Black-Odor Water with High Nitrogen and Phosphorus Removal Performance

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water Pub Date : 2024-09-07 DOI:10.3390/w16172534
Fengbin Zhao, Shumin Liu, Xin Fang, Ning Yang
{"title":"Application of Immobilized Microorganism Gel Beads in Black-Odor Water with High Nitrogen and Phosphorus Removal Performance","authors":"Fengbin Zhao, Shumin Liu, Xin Fang, Ning Yang","doi":"10.3390/w16172534","DOIUrl":null,"url":null,"abstract":"Black-odor water, which is caused by the excessive accumulation of nitrogen and phosphorus in water, is a significant problem. Immobilized microorganisms are considered to be an effective technical solution, but there are still many key parameters to be determined, such as organic matter dissolution, insufficient stability, and insufficient phosphorus removal capacity, among other problems. In this study, the optimum raw material ratios of immobilized microorganism gel beads were determined by means of a response surface experiment. The optimal ratio of raw materials was 5% polyvinyl alcohol (PVA), 1% sodium alginate (SA), and 6% bacterial powder. In addition, the nitrogen and phosphorus removal performance of the materials was improved by loading inorganic compounds, such as 0.5 wt.% zeolite, 0.5 wt.% iron powder, and 0.2 wt.% activated carbon. Tolerance analysis determined that these gel beads could maintain a good performance in a series of harsh environments, such as during intense agitation, at high temperatures, and at low pH values, etc. The total nitrogen (TN), ammonia nitrogen (NH3-N), and phosphorus (TP) removal efficiencies were 88.9%, 90%, and 95%.","PeriodicalId":23788,"journal":{"name":"Water","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16172534","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Black-odor water, which is caused by the excessive accumulation of nitrogen and phosphorus in water, is a significant problem. Immobilized microorganisms are considered to be an effective technical solution, but there are still many key parameters to be determined, such as organic matter dissolution, insufficient stability, and insufficient phosphorus removal capacity, among other problems. In this study, the optimum raw material ratios of immobilized microorganism gel beads were determined by means of a response surface experiment. The optimal ratio of raw materials was 5% polyvinyl alcohol (PVA), 1% sodium alginate (SA), and 6% bacterial powder. In addition, the nitrogen and phosphorus removal performance of the materials was improved by loading inorganic compounds, such as 0.5 wt.% zeolite, 0.5 wt.% iron powder, and 0.2 wt.% activated carbon. Tolerance analysis determined that these gel beads could maintain a good performance in a series of harsh environments, such as during intense agitation, at high temperatures, and at low pH values, etc. The total nitrogen (TN), ammonia nitrogen (NH3-N), and phosphorus (TP) removal efficiencies were 88.9%, 90%, and 95%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高脱氮除磷性能的固定化微生物凝胶珠在黑臭水体中的应用
黑臭水体是由于水中氮和磷积累过多而造成的一个重大问题。固定化微生物被认为是一种有效的技术解决方案,但仍有许多关键参数有待确定,如有机物溶解、稳定性不足、除磷能力不足等问题。本研究通过响应面实验确定了固定化微生物凝胶珠的最佳原料配比。最佳原料配比为 5%聚乙烯醇(PVA)、1%海藻酸钠(SA)和 6%细菌粉末。此外,通过添加无机化合物,如 0.5 重量百分比的沸石、0.5 重量百分比的铁粉和 0.2 重量百分比的活性炭,提高了材料的脱氮除磷性能。耐受性分析表明,这些凝胶珠可在一系列恶劣环境中保持良好的性能,如剧烈搅拌、高温和低 pH 值等。总氮(TN)、氨氮(NH3-N)和磷(TP)的去除率分别为 88.9%、90% 和 95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water
Water WATER RESOURCES-
CiteScore
5.80
自引率
14.70%
发文量
3491
审稿时长
19.85 days
期刊介绍: Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Study on Large-Scale Urban Water Distribution Network Computation Method Based on a GPU Framework Land-Use Pattern-Based Spatial Variation of Physicochemical Parameters and Efficacy of Safe Drinking Water Supply along the Mahaweli River, Sri Lanka Ensuring the Safety of an Extraction Well from an Upgradient Point Source of Pollution in a Computationally Constrained Setting The Impact of Catastrophic Floods on Macroinvertebrate Communities in Low-Order Streams: A Study from the Apennines (Northwest Italy) Characterization of Wastewater in an Activated Sludge Treatment Plant of the Food Sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1