Jawhar Ghommam, Lamia Iftekhar, Mohammad H. Rahman, Maarouf Saad
{"title":"Cooperative learning‐based practical formation‐containment control with prescribed performance for heterogeneous clusters of UAV/USV","authors":"Jawhar Ghommam, Lamia Iftekhar, Mohammad H. Rahman, Maarouf Saad","doi":"10.1002/asjc.3480","DOIUrl":null,"url":null,"abstract":"SummaryIn this paper, a new approach for formation‐containment control with prescribed performances is introduced for heterogeneous autonomous vehicles involving a cluster of leader unmanned aerial vehicles (UAVs) and follower unmanned surface vessels (USVs). We introduce a two‐layer distributed control system: The upper layer focuses on guiding the UAVs to form a scalable lattice while synchronizing their movement along a predefined path, and the second layer guides the USVs to enter the convex hull formed by the UAVs, ensuring collision‐free operation with static/dynamic objects. To prevent collisions and ensure lattice formation, a set of well‐defined bump functions are utilized in the design of the backstepping control algorithm. Managing virtual controls, we incorporate a nonlinear dynamic surface control (NDSC), while a universal barrier function enhances the convergence of formation tracking errors. Furthermore, each USV employs a cooperative adaptive learning neural network to handle uncertainties in heterogeneous vehicle models. Utilizing the Lyapunov theorem, the stability of the formation‐containment of UAV/USV is achieved, and all signals in the formation‐containment systems are semiglobal uniform ultimate bounded (SGUUB). A simulation example showcases the effectiveness of our proposed approach, highlighting contributions in collision avoidance, synchronization speed, and adaptive learning. Our work advances the heterogeneous formation‐containment literature towards more realistic scenarios with safety‐critical considerations amidst multiple layers of uncertainties and unknown parameters.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"18 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/asjc.3480","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
SummaryIn this paper, a new approach for formation‐containment control with prescribed performances is introduced for heterogeneous autonomous vehicles involving a cluster of leader unmanned aerial vehicles (UAVs) and follower unmanned surface vessels (USVs). We introduce a two‐layer distributed control system: The upper layer focuses on guiding the UAVs to form a scalable lattice while synchronizing their movement along a predefined path, and the second layer guides the USVs to enter the convex hull formed by the UAVs, ensuring collision‐free operation with static/dynamic objects. To prevent collisions and ensure lattice formation, a set of well‐defined bump functions are utilized in the design of the backstepping control algorithm. Managing virtual controls, we incorporate a nonlinear dynamic surface control (NDSC), while a universal barrier function enhances the convergence of formation tracking errors. Furthermore, each USV employs a cooperative adaptive learning neural network to handle uncertainties in heterogeneous vehicle models. Utilizing the Lyapunov theorem, the stability of the formation‐containment of UAV/USV is achieved, and all signals in the formation‐containment systems are semiglobal uniform ultimate bounded (SGUUB). A simulation example showcases the effectiveness of our proposed approach, highlighting contributions in collision avoidance, synchronization speed, and adaptive learning. Our work advances the heterogeneous formation‐containment literature towards more realistic scenarios with safety‐critical considerations amidst multiple layers of uncertainties and unknown parameters.
期刊介绍:
The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application.
Published six times a year, the Journal aims to be a key platform for control communities throughout the world.
The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive.
Topics include:
The theory and design of control systems and components, encompassing:
Robust and distributed control using geometric, optimal, stochastic and nonlinear methods
Game theory and state estimation
Adaptive control, including neural networks, learning, parameter estimation
and system fault detection
Artificial intelligence, fuzzy and expert systems
Hierarchical and man-machine systems
All parts of systems engineering which consider the reliability of components and systems
Emerging application areas, such as:
Robotics
Mechatronics
Computers for computer-aided design, manufacturing, and control of
various industrial processes
Space vehicles and aircraft, ships, and traffic
Biomedical systems
National economies
Power systems
Agriculture
Natural resources.