Cooperative learning‐based practical formation‐containment control with prescribed performance for heterogeneous clusters of UAV/USV

IF 2.7 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Asian Journal of Control Pub Date : 2024-09-02 DOI:10.1002/asjc.3480
Jawhar Ghommam, Lamia Iftekhar, Mohammad H. Rahman, Maarouf Saad
{"title":"Cooperative learning‐based practical formation‐containment control with prescribed performance for heterogeneous clusters of UAV/USV","authors":"Jawhar Ghommam, Lamia Iftekhar, Mohammad H. Rahman, Maarouf Saad","doi":"10.1002/asjc.3480","DOIUrl":null,"url":null,"abstract":"SummaryIn this paper, a new approach for formation‐containment control with prescribed performances is introduced for heterogeneous autonomous vehicles involving a cluster of leader unmanned aerial vehicles (UAVs) and follower unmanned surface vessels (USVs). We introduce a two‐layer distributed control system: The upper layer focuses on guiding the UAVs to form a scalable lattice while synchronizing their movement along a predefined path, and the second layer guides the USVs to enter the convex hull formed by the UAVs, ensuring collision‐free operation with static/dynamic objects. To prevent collisions and ensure lattice formation, a set of well‐defined bump functions are utilized in the design of the backstepping control algorithm. Managing virtual controls, we incorporate a nonlinear dynamic surface control (NDSC), while a universal barrier function enhances the convergence of formation tracking errors. Furthermore, each USV employs a cooperative adaptive learning neural network to handle uncertainties in heterogeneous vehicle models. Utilizing the Lyapunov theorem, the stability of the formation‐containment of UAV/USV is achieved, and all signals in the formation‐containment systems are semiglobal uniform ultimate bounded (SGUUB). A simulation example showcases the effectiveness of our proposed approach, highlighting contributions in collision avoidance, synchronization speed, and adaptive learning. Our work advances the heterogeneous formation‐containment literature towards more realistic scenarios with safety‐critical considerations amidst multiple layers of uncertainties and unknown parameters.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"18 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/asjc.3480","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

SummaryIn this paper, a new approach for formation‐containment control with prescribed performances is introduced for heterogeneous autonomous vehicles involving a cluster of leader unmanned aerial vehicles (UAVs) and follower unmanned surface vessels (USVs). We introduce a two‐layer distributed control system: The upper layer focuses on guiding the UAVs to form a scalable lattice while synchronizing their movement along a predefined path, and the second layer guides the USVs to enter the convex hull formed by the UAVs, ensuring collision‐free operation with static/dynamic objects. To prevent collisions and ensure lattice formation, a set of well‐defined bump functions are utilized in the design of the backstepping control algorithm. Managing virtual controls, we incorporate a nonlinear dynamic surface control (NDSC), while a universal barrier function enhances the convergence of formation tracking errors. Furthermore, each USV employs a cooperative adaptive learning neural network to handle uncertainties in heterogeneous vehicle models. Utilizing the Lyapunov theorem, the stability of the formation‐containment of UAV/USV is achieved, and all signals in the formation‐containment systems are semiglobal uniform ultimate bounded (SGUUB). A simulation example showcases the effectiveness of our proposed approach, highlighting contributions in collision avoidance, synchronization speed, and adaptive learning. Our work advances the heterogeneous formation‐containment literature towards more realistic scenarios with safety‐critical considerations amidst multiple layers of uncertainties and unknown parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于合作学习的实用编队控制,为异构无人机/无人潜航器集群提供规定性能
摘要 本文介绍了一种新的编队控制方法,该方法适用于由无人驾驶航空飞行器(UAV)和无人驾驶水面舰艇(USV)组成的异构自主飞行器,具有规定的性能。我们引入了一个双层分布式控制系统:上层主要引导无人飞行器形成一个可扩展的网格,同时沿预定路径同步移动;第二层引导 USV 进入无人飞行器形成的凸壳,确保与静态/动态物体无碰撞。为了防止碰撞并确保晶格的形成,我们在设计反步进控制算法时使用了一组定义明确的凹凸函数。在虚拟控制方面,我们采用了非线性动态表面控制(NDSC),而通用障碍函数则增强了编队跟踪误差的收敛性。此外,每个 USV 都采用了合作自适应学习神经网络,以处理异构飞行器模型中的不确定性。利用李雅普诺夫定理,实现了无人机/USV编队控制的稳定性,编队控制系统中的所有信号都是半全局均匀终极有界(SGUUB)的。一个仿真实例展示了我们提出的方法的有效性,突出了在避免碰撞、同步速度和自适应学习方面的贡献。我们的研究工作推动了异构编队控制文献的发展,使其能够在多层不确定性和未知参数的情况下,考虑到对安全至关重要的因素,面向更加现实的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asian Journal of Control
Asian Journal of Control 工程技术-自动化与控制系统
CiteScore
4.80
自引率
25.00%
发文量
253
审稿时长
7.2 months
期刊介绍: The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application. Published six times a year, the Journal aims to be a key platform for control communities throughout the world. The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive. Topics include: The theory and design of control systems and components, encompassing: Robust and distributed control using geometric, optimal, stochastic and nonlinear methods Game theory and state estimation Adaptive control, including neural networks, learning, parameter estimation and system fault detection Artificial intelligence, fuzzy and expert systems Hierarchical and man-machine systems All parts of systems engineering which consider the reliability of components and systems Emerging application areas, such as: Robotics Mechatronics Computers for computer-aided design, manufacturing, and control of various industrial processes Space vehicles and aircraft, ships, and traffic Biomedical systems National economies Power systems Agriculture Natural resources.
期刊最新文献
Issue Information Issue Information Issue Information Issue Information Adaptive output feedback time-varying formation tracking of multi-agent system with a leader of unknown input
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1