{"title":"Leveraging large-scale genetic data to assess the causal impact of COVID-19 on multisystemic diseases","authors":"Xiangyang Zhang, Zhaohui Jiang, Jiayao Ma, Yaru Qi, Yin Li, Yan Zhang, Yihan Liu, Chaochao Wei, Yihong Chen, Ping Liu, Yinghui Peng, Jun Tan, Ying Han, Shan Zeng, Changjing Cai, Hong Shen","doi":"10.1186/s40537-024-00997-4","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>The long-term impacts of COVID-19 on human health are a major concern, yet comprehensive evaluations of its effects on various health conditions are lacking.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>This study aims to evaluate the role of various diseases in relation to COVID-19 by analyzing genetic data from a large-scale population over 2,000,000 individuals. A bidirectional two-sample Mendelian randomization approach was used, with exposures including COVID-19 susceptibility, hospitalization, and severity, and outcomes encompassing 86 different diseases or traits. A reverse Mendelian randomization analysis was performed to assess the impact of these diseases on COVID-19.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Our analysis identified causal relationships between COVID-19 susceptibility and several conditions, including breast cancer (OR = 1.0073, 95% CI = 1.0032–1.0114, <i>p</i> = 5 × 10 − 4), ER + breast cancer (OR = 0.5252, 95% CI = 0.3589–0.7685, <i>p</i> = 9 × 10 − 4), and heart failure (OR = 1.0026, 95% CI = 1.001–1.0042, <i>p</i> = 0.002). COVID-19 hospitalization was causally linked to heart failure (OR = 1.0017, 95% CI = 1.0006–1.0028, <i>p</i> = 0.002) and Alzheimer’s disease (OR = 1.5092, 95% CI = 1.1942–1.9072, <i>p</i> = 0.0006). COVID-19 severity had causal effects on primary biliary cirrhosis (OR = 2.6333, 95% CI = 1.8274–3.7948, <i>p</i> = 2.059 × 10 − 7), celiac disease (OR = 0.0708, 95% CI = 0.0538–0.0932, <i>p</i> = 9.438 × 10–80), and Alzheimer’s disease (OR = 1.5092, 95% CI = 1.1942–1.9072, <i>p</i> = 0.0006). Reverse MR analysis indicated that rheumatoid arthritis, diabetic nephropathy, multiple sclerosis, and total testosterone (female) influence COVID-19 outcomes. We assessed heterogeneity and horizontal pleiotropy to ensure result reliability and employed the Steiger directionality test to confirm the direction of causality.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This study provides a comprehensive analysis of the causal relationships between COVID-19 and diverse health conditions. Our findings highlight the long-term impacts of COVID-19 on human health, emphasizing the need for continuous monitoring and targeted interventions for affected individuals. Future research should explore these relationships to develop comprehensive healthcare strategies.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"1 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00997-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The long-term impacts of COVID-19 on human health are a major concern, yet comprehensive evaluations of its effects on various health conditions are lacking.
Methods
This study aims to evaluate the role of various diseases in relation to COVID-19 by analyzing genetic data from a large-scale population over 2,000,000 individuals. A bidirectional two-sample Mendelian randomization approach was used, with exposures including COVID-19 susceptibility, hospitalization, and severity, and outcomes encompassing 86 different diseases or traits. A reverse Mendelian randomization analysis was performed to assess the impact of these diseases on COVID-19.
Results
Our analysis identified causal relationships between COVID-19 susceptibility and several conditions, including breast cancer (OR = 1.0073, 95% CI = 1.0032–1.0114, p = 5 × 10 − 4), ER + breast cancer (OR = 0.5252, 95% CI = 0.3589–0.7685, p = 9 × 10 − 4), and heart failure (OR = 1.0026, 95% CI = 1.001–1.0042, p = 0.002). COVID-19 hospitalization was causally linked to heart failure (OR = 1.0017, 95% CI = 1.0006–1.0028, p = 0.002) and Alzheimer’s disease (OR = 1.5092, 95% CI = 1.1942–1.9072, p = 0.0006). COVID-19 severity had causal effects on primary biliary cirrhosis (OR = 2.6333, 95% CI = 1.8274–3.7948, p = 2.059 × 10 − 7), celiac disease (OR = 0.0708, 95% CI = 0.0538–0.0932, p = 9.438 × 10–80), and Alzheimer’s disease (OR = 1.5092, 95% CI = 1.1942–1.9072, p = 0.0006). Reverse MR analysis indicated that rheumatoid arthritis, diabetic nephropathy, multiple sclerosis, and total testosterone (female) influence COVID-19 outcomes. We assessed heterogeneity and horizontal pleiotropy to ensure result reliability and employed the Steiger directionality test to confirm the direction of causality.
Conclusions
This study provides a comprehensive analysis of the causal relationships between COVID-19 and diverse health conditions. Our findings highlight the long-term impacts of COVID-19 on human health, emphasizing the need for continuous monitoring and targeted interventions for affected individuals. Future research should explore these relationships to develop comprehensive healthcare strategies.
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.