AI sees beyond humans: automated diagnosis of myopia based on peripheral refraction map using interpretable deep learning

IF 8.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Journal of Big Data Pub Date : 2024-09-08 DOI:10.1186/s40537-024-00989-4
Yong Tang, Zhenghua Lin, Linjing Zhou, Weijia Wang, Longbo Wen, Yongli Zhou, Zongyuan Ge, Zhao Chen, Weiwei Dai, Zhikuan Yang, He Tang, Weizhong Lan
{"title":"AI sees beyond humans: automated diagnosis of myopia based on peripheral refraction map using interpretable deep learning","authors":"Yong Tang, Zhenghua Lin, Linjing Zhou, Weijia Wang, Longbo Wen, Yongli Zhou, Zongyuan Ge, Zhao Chen, Weiwei Dai, Zhikuan Yang, He Tang, Weizhong Lan","doi":"10.1186/s40537-024-00989-4","DOIUrl":null,"url":null,"abstract":"<p>The question of whether artificial intelligence (AI) can surpass human capabilities is crucial in the application of AI in clinical medicine. To explore this, an interpretable deep learning (DL) model was developed to assess myopia status using retinal refraction maps obtained with a novel peripheral refractor. The DL model demonstrated promising performance, achieving an AUC of 0.9074 (95% CI 0.83–0.97), an accuracy of 0.8140 (95% CI 0.70–0.93), a sensitivity of 0.7500 (95% CI 0.51–0.90), and a specificity of 0.8519 (95% CI 0.68–0.94). Grad-CAM analysis provided interpretable visualization of the attention of DL model and revealed that the DL model utilized information from the central retina, similar to human readers. Additionally, the model considered information from vertical regions across the central retina, which human readers had overlooked. This finding suggests that AI can indeed surpass human capabilities, bolstering our confidence in the use of AI in clinical practice, especially in new scenarios where prior human knowledge is limited.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"23 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00989-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The question of whether artificial intelligence (AI) can surpass human capabilities is crucial in the application of AI in clinical medicine. To explore this, an interpretable deep learning (DL) model was developed to assess myopia status using retinal refraction maps obtained with a novel peripheral refractor. The DL model demonstrated promising performance, achieving an AUC of 0.9074 (95% CI 0.83–0.97), an accuracy of 0.8140 (95% CI 0.70–0.93), a sensitivity of 0.7500 (95% CI 0.51–0.90), and a specificity of 0.8519 (95% CI 0.68–0.94). Grad-CAM analysis provided interpretable visualization of the attention of DL model and revealed that the DL model utilized information from the central retina, similar to human readers. Additionally, the model considered information from vertical regions across the central retina, which human readers had overlooked. This finding suggests that AI can indeed surpass human capabilities, bolstering our confidence in the use of AI in clinical practice, especially in new scenarios where prior human knowledge is limited.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能的视力超越人类:利用可解释深度学习,基于周边屈光图自动诊断近视
人工智能(AI)能否超越人类的能力,是将人工智能应用于临床医学的关键问题。为了探讨这个问题,我们开发了一个可解释的深度学习(DL)模型,利用新型周边屈光仪获得的视网膜屈光度图来评估近视状态。该深度学习模型表现出良好的性能,AUC 为 0.9074(95% CI 0.83-0.97),准确度为 0.8140(95% CI 0.70-0.93),灵敏度为 0.7500(95% CI 0.51-0.90),特异度为 0.8519(95% CI 0.68-0.94)。Grad-CAM 分析为 DL 模型的注意力提供了可解释的可视化,并显示 DL 模型利用了视网膜中央的信息,与人类读者类似。此外,该模型还考虑了来自视网膜中央垂直区域的信息,而人类读者却忽略了这些信息。这一发现表明,人工智能确实可以超越人类的能力,增强了我们在临床实践中使用人工智能的信心,尤其是在人类先前知识有限的新场景中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Big Data
Journal of Big Data Computer Science-Information Systems
CiteScore
17.80
自引率
3.70%
发文量
105
审稿时长
13 weeks
期刊介绍: The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.
期刊最新文献
Shielding networks: enhancing intrusion detection with hybrid feature selection and stack ensemble learning Machine learning and deep learning models based grid search cross validation for short-term solar irradiance forecasting Optimizing poultry audio signal classification with deep learning and burn layer fusion Integrating microarray-based spatial transcriptomics and RNA-seq reveals tissue architecture in colorectal cancer A model for investment type recommender system based on the potential investors based on investors and experts feedback using ANFIS and MNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1