Qi Bin Kwong, Yee Thung Kon, Wan Rusydiah W. Rusik, Mohd Nor Azizi Shabudin, Shahirah Shazana A. Rahman, Harikrishna Kulaveerasingam, David Ross Appleton
{"title":"Enhancing oil palm segmentation model with GAN-based augmentation","authors":"Qi Bin Kwong, Yee Thung Kon, Wan Rusydiah W. Rusik, Mohd Nor Azizi Shabudin, Shahirah Shazana A. Rahman, Harikrishna Kulaveerasingam, David Ross Appleton","doi":"10.1186/s40537-024-00990-x","DOIUrl":null,"url":null,"abstract":"<p>In digital agriculture, accurate crop detection is fundamental to developing automated systems for efficient plantation management. For oil palm, the main challenge lies in developing robust models that perform well in different environmental conditions. This study addresses the feasibility of using GAN augmentation methods to improve palm detection models. For this purpose, drone images of young palms (< 5 year-old) from eight different estates were collected, annotated, and used to build a baseline detection model based on DETR. StyleGAN2 was trained on the extracted palms and then used to generate a series of synthetic palms, which were then inserted into tiles representing different environments. CycleGAN networks were trained for bidirectional translation between synthetic and real tiles, subsequently utilized to augment the authenticity of synthetic tiles. Both synthetic and real tiles were used to train the GAN-based detection model. The baseline model achieved precision and recall values of 95.8% and 97.2%. The GAN-based model achieved comparable result, with precision and recall values of 98.5% and 98.6%. In the challenge dataset 1 consisting older palms (> 5 year-old), both models also achieved similar accuracies, with baseline model achieving precision and recall of 93.1% and 99.4%, and GAN-based model achieving 95.7% and 99.4%. As for the challenge dataset 2 consisting of storm affected palms, the baseline model achieved precision of 100% but recall was only 13%. The GAN-based model achieved a significantly better result, with a precision and recall values of 98.7% and 95.3%. This result demonstrates that images generated by GANs have the potential to enhance the accuracies of palm detection models.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"25 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00990-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In digital agriculture, accurate crop detection is fundamental to developing automated systems for efficient plantation management. For oil palm, the main challenge lies in developing robust models that perform well in different environmental conditions. This study addresses the feasibility of using GAN augmentation methods to improve palm detection models. For this purpose, drone images of young palms (< 5 year-old) from eight different estates were collected, annotated, and used to build a baseline detection model based on DETR. StyleGAN2 was trained on the extracted palms and then used to generate a series of synthetic palms, which were then inserted into tiles representing different environments. CycleGAN networks were trained for bidirectional translation between synthetic and real tiles, subsequently utilized to augment the authenticity of synthetic tiles. Both synthetic and real tiles were used to train the GAN-based detection model. The baseline model achieved precision and recall values of 95.8% and 97.2%. The GAN-based model achieved comparable result, with precision and recall values of 98.5% and 98.6%. In the challenge dataset 1 consisting older palms (> 5 year-old), both models also achieved similar accuracies, with baseline model achieving precision and recall of 93.1% and 99.4%, and GAN-based model achieving 95.7% and 99.4%. As for the challenge dataset 2 consisting of storm affected palms, the baseline model achieved precision of 100% but recall was only 13%. The GAN-based model achieved a significantly better result, with a precision and recall values of 98.7% and 95.3%. This result demonstrates that images generated by GANs have the potential to enhance the accuracies of palm detection models.
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.