{"title":"Futuristic flood risks assessment, in the Upper Vellar Basin, integrating AHP and bivariate analysis","authors":"Subbulakshmi M, Sachikanta Nanda","doi":"10.1016/j.asr.2024.08.030","DOIUrl":null,"url":null,"abstract":"<div><div>Flood susceptibility maps provide invaluable information for assessing and managing flood-prone areas, aiding in proactive planning, risk reduction strategies, and safeguarding vulnerable communities. The current research concentrates on advancing sustainable development practices by undertaking a comprehensive assessment of flood susceptibility in the Upper Vellar basin, with a projection for 2050. Employing an integrative methodology, this study utilizes an Analytical Hierarchy Process (AHP) and Bivariate Analysis. Nine critical parameters were used: elevation, distance from the river, distance from the road, drainage density, predicted LULC, projected precipitation, slope, soil type, and Topographic Wetness Index (TWI). The Modules of Land Use Change Evaluation (MOLUSE) plugin, which uses Cellular Automata-Artificial Neural Network (CA-ANN), was employed to predict the LULC map for the year 2050. Furthermore, bias-corrected Coupled Model Intercomparison Project 6 (CMIP 6) EC EARTH 3 Model (GCM) RCP 4.5 and 8.5 projected precipitation data were employed. The resulting flood susceptibility zones are classified into three categories: low, moderate, and high, with proportions of 32.64%, 55.52%, and 11.84% for RCP 4.5, and 34.63%, 53.46%, and 11.91% for RCP 8.5, respectively, concerning the total area. In both scenarios, nearly 38% of the settlement area is at high flood risk. This study provides essential insights for policymakers and stakeholders, facilitating the formulation of sustainable strategies to address projected changes in land use, precipitation patterns, and flood susceptibility in the Upper Vellar region up to 2050.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724008494","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Flood susceptibility maps provide invaluable information for assessing and managing flood-prone areas, aiding in proactive planning, risk reduction strategies, and safeguarding vulnerable communities. The current research concentrates on advancing sustainable development practices by undertaking a comprehensive assessment of flood susceptibility in the Upper Vellar basin, with a projection for 2050. Employing an integrative methodology, this study utilizes an Analytical Hierarchy Process (AHP) and Bivariate Analysis. Nine critical parameters were used: elevation, distance from the river, distance from the road, drainage density, predicted LULC, projected precipitation, slope, soil type, and Topographic Wetness Index (TWI). The Modules of Land Use Change Evaluation (MOLUSE) plugin, which uses Cellular Automata-Artificial Neural Network (CA-ANN), was employed to predict the LULC map for the year 2050. Furthermore, bias-corrected Coupled Model Intercomparison Project 6 (CMIP 6) EC EARTH 3 Model (GCM) RCP 4.5 and 8.5 projected precipitation data were employed. The resulting flood susceptibility zones are classified into three categories: low, moderate, and high, with proportions of 32.64%, 55.52%, and 11.84% for RCP 4.5, and 34.63%, 53.46%, and 11.91% for RCP 8.5, respectively, concerning the total area. In both scenarios, nearly 38% of the settlement area is at high flood risk. This study provides essential insights for policymakers and stakeholders, facilitating the formulation of sustainable strategies to address projected changes in land use, precipitation patterns, and flood susceptibility in the Upper Vellar region up to 2050.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.