{"title":"Assessment of selected ionospheric mapping functions using SF-PPP on different solar activities","authors":"Jun Chen, Liangke Huang, Si Xiong, Pituan Wu","doi":"10.1016/j.asr.2024.08.066","DOIUrl":null,"url":null,"abstract":"In single-frequency precise point positioning (SF-PPP), the ionospheric delays provided by global ionosphere maps (GIMs) are in the vertical direction. Therefore, an ionospheric mapping function is applied to convert the vertical direction to the slant one. However, the performance of mapping functions (MF) applied in SF-PPP under different solar activities is unknown. Meanwhile, understanding their performance can help us better improve the accuracy of the ionospheric mapping function. For this purpose, three traditional ionospheric mapping functions, such as the standard single-layer model mapping function (SLM MF), the modified single-layer model mapping function (MSLM MF), and the Klobuchar MF, are evaluated. Additionally, the mapping function named SGG MF, which considers the effect of ionospheric gradients, is also assessed. The positioning results indicate that the SGG MF has an improvement of (50.3 %, 37.3 %), (31.7 %, 23.4 %), and (16.8 %, 13.3 %) compared with Klobuchar MF, SLM MF, and MSLM MF during the year (2014, 2021), respectively. The mean positioning errors of SLM MF, MSLM MF, and SGG MF are about (0.20 m, 0.05 m), (0.25 m, 0.10 m), and (0.30 m, 0.10 m) smaller than that of Klobuchar MF over high-/mid- latitude during the year (2014, 2021), while the values are (0.25 m, 0.20 m), (0.40 m, 0.35 m), and (0.55 m, 0.50 m) over low-latitude region. Furthermore, the correlation coefficients between positioning results and solar activities are (0.114, 0.354), (0.058, 0.324), (0.098, 0.295), and (0.235, 0.271) for Klobucahr MF, SLM MF, MSLM MF, and SGG MF during the corresponding year.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.asr.2024.08.066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In single-frequency precise point positioning (SF-PPP), the ionospheric delays provided by global ionosphere maps (GIMs) are in the vertical direction. Therefore, an ionospheric mapping function is applied to convert the vertical direction to the slant one. However, the performance of mapping functions (MF) applied in SF-PPP under different solar activities is unknown. Meanwhile, understanding their performance can help us better improve the accuracy of the ionospheric mapping function. For this purpose, three traditional ionospheric mapping functions, such as the standard single-layer model mapping function (SLM MF), the modified single-layer model mapping function (MSLM MF), and the Klobuchar MF, are evaluated. Additionally, the mapping function named SGG MF, which considers the effect of ionospheric gradients, is also assessed. The positioning results indicate that the SGG MF has an improvement of (50.3 %, 37.3 %), (31.7 %, 23.4 %), and (16.8 %, 13.3 %) compared with Klobuchar MF, SLM MF, and MSLM MF during the year (2014, 2021), respectively. The mean positioning errors of SLM MF, MSLM MF, and SGG MF are about (0.20 m, 0.05 m), (0.25 m, 0.10 m), and (0.30 m, 0.10 m) smaller than that of Klobuchar MF over high-/mid- latitude during the year (2014, 2021), while the values are (0.25 m, 0.20 m), (0.40 m, 0.35 m), and (0.55 m, 0.50 m) over low-latitude region. Furthermore, the correlation coefficients between positioning results and solar activities are (0.114, 0.354), (0.058, 0.324), (0.098, 0.295), and (0.235, 0.271) for Klobucahr MF, SLM MF, MSLM MF, and SGG MF during the corresponding year.