Expected Residual Minimization Formulation for Stochastic Absolute Value Equations

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED Journal of Optimization Theory and Applications Pub Date : 2024-09-12 DOI:10.1007/s10957-024-02527-x
Jingyong Tang, Jinchuan Zhou
{"title":"Expected Residual Minimization Formulation for Stochastic Absolute Value Equations","authors":"Jingyong Tang, Jinchuan Zhou","doi":"10.1007/s10957-024-02527-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper we investigate a class of stochastic absolute value equations (SAVE). After establishing the relationship between the stochastic linear complementarity problem and SAVE, we study the expected residual minimization (ERM) formulation for SAVE and its Monte Carlo sample average approximation. In particular, we show that the ERM problem and its sample average approximation have optimal solutions under the condition of <span>\\(R_0\\)</span> pair, and the optimal value of the sample average approximation has uniform exponential convergence. Furthermore, we prove that the solutions to the ERM problem are robust for SAVE. For a class of SAVE problems, we use its special structure to construct a smooth residual and further study the convergence of the stationary points. Finally, a smoothing gradient method is proposed by simultaneously considering sample sampling and smooth techniques for solving SAVE. Numerical experiments exhibit the effectiveness of the method.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"7 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02527-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we investigate a class of stochastic absolute value equations (SAVE). After establishing the relationship between the stochastic linear complementarity problem and SAVE, we study the expected residual minimization (ERM) formulation for SAVE and its Monte Carlo sample average approximation. In particular, we show that the ERM problem and its sample average approximation have optimal solutions under the condition of \(R_0\) pair, and the optimal value of the sample average approximation has uniform exponential convergence. Furthermore, we prove that the solutions to the ERM problem are robust for SAVE. For a class of SAVE problems, we use its special structure to construct a smooth residual and further study the convergence of the stationary points. Finally, a smoothing gradient method is proposed by simultaneously considering sample sampling and smooth techniques for solving SAVE. Numerical experiments exhibit the effectiveness of the method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机绝对值方程的期望残差最小化公式
本文研究了一类随机绝对值方程(SAVE)。在建立了随机线性互补问题和 SAVE 之间的关系之后,我们研究了 SAVE 的期望残差最小化(ERM)公式及其蒙特卡罗样本平均近似值。特别是,我们证明了 ERM 问题及其样本平均近似值在 \(R_0\) 对的条件下有最优解,而且样本平均近似值的最优值具有均匀的指数收敛性。此外,我们还证明了 ERM 问题的解对于 SAVE 是稳健的。对于一类 SAVE 问题,我们利用其特殊结构构建了平滑残差,并进一步研究了静止点的收敛性。最后,我们提出了一种平滑梯度法,同时考虑了样本采样和平滑技术来求解 SAVE。数值实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
期刊最新文献
Effects of patient education on the oral behavior of patients with temporomandibular degenerative joint disease: a prospective case series study. On Tractable Convex Relaxations of Standard Quadratic Optimization Problems under Sparsity Constraints. Simultaneous Diagonalization Under Weak Regularity and a Characterization Seeking Consensus on Subspaces in Federated Principal Component Analysis A Multilevel Method for Self-Concordant Minimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1