{"title":"Real-time platelet P2Y12 receptor occupancy as a promising pharmacodynamics biomarker for bridging the gap between PK/PD of clopidogrel therapy","authors":"Haipeng Li, Yueming Gu, Yumeng Zhao, Aiyun Xu, Dong Sun, Jingkai Gu","doi":"10.1016/j.apsb.2024.08.008","DOIUrl":null,"url":null,"abstract":"Clopidogrel effectively inhibits platelet aggregation in response to ADP by irreversibly binding to the platelet P2Y receptor through its active metabolite. However, the observed discrepancies between the pharmacokinetics (PK) and pharmacodynamics (PD) of clopidogrel present substantial challenges in individualizing of antiplatelet therapy. To address these challenges, a robust liquid chromatography–tandem mass spectrometry method has been developed to facilitate the real-time assessment of platelet P2Y receptor occupancy. This method has been validated in animal models, providing a reliable link between individual PK profiles and PD effects. Target receptor occupancy offers a comprehensive overview of interindividual variations in clopidogrel metabolism, regulation of P2Y receptor expression, and platelet turnover. Moreover, it directly correlates with the inhibitory effect on platelet aggregation. The levels of platelet P2Y occupancy accurately reflect the extent of clinical factors influencing the PD of clopidogrel, including dosage, drug–drug interactions (DDI), and type 2 diabetes mellitus (T2DM). As a normalized metric, platelet P2Y occupancy not only serves potential as a diagnostic tool for personalized clopidogrel therapy but also aids in elucidating the role of the P2Y signaling pathway in cases of abnormal on-treatment platelet reactivity.","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.apsb.2024.08.008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Clopidogrel effectively inhibits platelet aggregation in response to ADP by irreversibly binding to the platelet P2Y receptor through its active metabolite. However, the observed discrepancies between the pharmacokinetics (PK) and pharmacodynamics (PD) of clopidogrel present substantial challenges in individualizing of antiplatelet therapy. To address these challenges, a robust liquid chromatography–tandem mass spectrometry method has been developed to facilitate the real-time assessment of platelet P2Y receptor occupancy. This method has been validated in animal models, providing a reliable link between individual PK profiles and PD effects. Target receptor occupancy offers a comprehensive overview of interindividual variations in clopidogrel metabolism, regulation of P2Y receptor expression, and platelet turnover. Moreover, it directly correlates with the inhibitory effect on platelet aggregation. The levels of platelet P2Y occupancy accurately reflect the extent of clinical factors influencing the PD of clopidogrel, including dosage, drug–drug interactions (DDI), and type 2 diabetes mellitus (T2DM). As a normalized metric, platelet P2Y occupancy not only serves potential as a diagnostic tool for personalized clopidogrel therapy but also aids in elucidating the role of the P2Y signaling pathway in cases of abnormal on-treatment platelet reactivity.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.