Machine learning study to identify collective flow in small and large colliding systems

IF 3.1 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review C Pub Date : 2024-08-28 DOI:10.1103/physrevc.110.024910
Shuang Guo (郭爽), Han-Sheng Wang (王瀚生), Kai Zhou (周凯), Guo-Liang Ma (马国亮)
{"title":"Machine learning study to identify collective flow in small and large colliding systems","authors":"Shuang Guo (郭爽), Han-Sheng Wang (王瀚生), Kai Zhou (周凯), Guo-Liang Ma (马国亮)","doi":"10.1103/physrevc.110.024910","DOIUrl":null,"url":null,"abstract":"Collective flow has been found to be similar between small colliding systems (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>p</mi><mo>+</mo><mi>p</mi></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">p</mi><mo>+</mo><mi mathvariant=\"normal\">A</mi></mrow></math> collisions) and large colliding systems (peripheral <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">A</mi><mo>+</mo><mi mathvariant=\"normal\">A</mi></mrow></math> collisions) at the CERN Large Hadron Collider. In order to study the differences of collective flow between small and large colliding systems, we employ a point-cloud network to identify <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>p</mi><mspace width=\"4pt\"></mspace><mo>+</mo></mrow></math> Pb collisions and peripheral Pb <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>+</mo></math> Pb collisions at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msqrt><msub><mi>s</mi><mtext>NN</mtext></msub></msqrt><mo>=</mo><mn>5.02</mn></mrow></math> TeV generated from a multiphase transport model. After removing the discrepancies in the pseudorapidity distribution and the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>p</mi><mi mathvariant=\"normal\">T</mi></msub></math> spectra, we capture the discrepancy in collective flow. Although the verification accuracy of our PCN is limited due to similar event-by-event distributions of elliptic and triangular flow, we demonstrate that collective flow between <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>p</mi><mspace width=\"4pt\"></mspace><mo>+</mo></mrow></math> Pb collisions and peripheral Pb <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>+</mo></math> Pb collisions becomes more distinct with increasing final hadron multiplicity and parton scattering cross section. This study not only highlights the potential of PCN techniques in advancing the understanding of collective flow in varying colliding systems, but more importantly lays the groundwork for the future PCN-related research.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"22 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.110.024910","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Collective flow has been found to be similar between small colliding systems (p+p and p+A collisions) and large colliding systems (peripheral A+A collisions) at the CERN Large Hadron Collider. In order to study the differences of collective flow between small and large colliding systems, we employ a point-cloud network to identify p+ Pb collisions and peripheral Pb + Pb collisions at sNN=5.02 TeV generated from a multiphase transport model. After removing the discrepancies in the pseudorapidity distribution and the pT spectra, we capture the discrepancy in collective flow. Although the verification accuracy of our PCN is limited due to similar event-by-event distributions of elliptic and triangular flow, we demonstrate that collective flow between p+ Pb collisions and peripheral Pb + Pb collisions becomes more distinct with increasing final hadron multiplicity and parton scattering cross section. This study not only highlights the potential of PCN techniques in advancing the understanding of collective flow in varying colliding systems, but more importantly lays the groundwork for the future PCN-related research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别小型和大型碰撞系统中集体流的机器学习研究
在欧洲核子研究中心的大型强子对撞机上,小型对撞系统(p+p 和 p+A 对撞)和大型对撞系统(外围 A+A 对撞)之间的集体流是相似的。为了研究小型对撞系统和大型对撞系统之间集体流的差异,我们采用了一个点云网络来识别由多相输运模型生成的 sNN=5.02 TeV 的 p+ Pb 对撞和外围 Pb + Pb 对撞。在剔除了伪电容分布和 pT 谱的差异之后,我们捕捉到了集体流的差异。尽管由于椭圆流和三角流的事件分布相似,我们的PCN的验证精度受到了限制,但我们证明了随着最终强子倍率和粒子散射截面的增加,p+ Pb对撞和外围Pb + Pb对撞之间的集体流变得更加明显。这项研究不仅凸显了 PCN 技术在推进对不同对撞系统中集体流的理解方面的潜力,更重要的是为未来 PCN 相关研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review C
Physical Review C 物理-物理:核物理
CiteScore
5.70
自引率
35.50%
发文量
0
审稿时长
1-2 weeks
期刊介绍: Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field. PRC covers experimental and theoretical results in all aspects of nuclear physics, including: Nucleon-nucleon interaction, few-body systems Nuclear structure Nuclear reactions Relativistic nuclear collisions Hadronic physics and QCD Electroweak interaction, symmetries Nuclear astrophysics
期刊最新文献
Laser-assisted deuterium-tritium fusion: A quantum dynamical model Deformation probes for light nuclei in their collisions at relativistic energies Extraction of the microscopic properties of quasiparticles using deep neural networks Novel approach to infer the H2(p,γ)He3 angular distribution: Experimental results and comparison with theoretical calculations Lifetime measurement in Ru94 and Tc93 to investigate seniority conservation in the N=50 isotones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1