Lightweight Automatic ECN Tuning Based on Deep Reinforcement Learning With Ultra-Low Overhead in Datacenter Networks

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Network and Service Management Pub Date : 2024-08-27 DOI:10.1109/TNSM.2024.3450596
Jinbin Hu;Zikai Zhou;Jin Zhang
{"title":"Lightweight Automatic ECN Tuning Based on Deep Reinforcement Learning With Ultra-Low Overhead in Datacenter Networks","authors":"Jinbin Hu;Zikai Zhou;Jin Zhang","doi":"10.1109/TNSM.2024.3450596","DOIUrl":null,"url":null,"abstract":"In modern datacenter networks (DCNs), mainstream congestion control (CC) mechanisms essentially rely on Explicit Congestion Notification (ECN) to reflect congestion. The traditional static ECN threshold performs poorly under dynamic scenarios, and setting a proper ECN threshold under various traffic patterns is challenging and time-consuming. The recently proposed reinforcement learning (RL) based ECN Tuning algorithm (ACC) consumes a large number of computational resources, making it difficult to deploy on switches. In this paper, we present a lightweight and hierarchical automated ECN tuning algorithm called LAECN, which can fully exploit the performance benefits of deep reinforcement learning with ultra-low overhead. The simulation results show that LAECN improves performance significantly by reducing latency and increasing throughput in stable network conditions, and also shows consistent high performance in small flows network environments. For example, LAECN effectively improves throughput by up to 47%, 34%, 32% and 24% over DCQCN, TIMELY, HPCC and ACC, respectively.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6398-6408"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10649006/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In modern datacenter networks (DCNs), mainstream congestion control (CC) mechanisms essentially rely on Explicit Congestion Notification (ECN) to reflect congestion. The traditional static ECN threshold performs poorly under dynamic scenarios, and setting a proper ECN threshold under various traffic patterns is challenging and time-consuming. The recently proposed reinforcement learning (RL) based ECN Tuning algorithm (ACC) consumes a large number of computational resources, making it difficult to deploy on switches. In this paper, we present a lightweight and hierarchical automated ECN tuning algorithm called LAECN, which can fully exploit the performance benefits of deep reinforcement learning with ultra-low overhead. The simulation results show that LAECN improves performance significantly by reducing latency and increasing throughput in stable network conditions, and also shows consistent high performance in small flows network environments. For example, LAECN effectively improves throughput by up to 47%, 34%, 32% and 24% over DCQCN, TIMELY, HPCC and ACC, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据中心网络中基于深度强化学习的超低开销轻量级自动 ECN 调整
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
期刊最新文献
Table of Contents Table of Contents Guest Editors’ Introduction: Special Issue on Robust and Resilient Future Communication Networks A Novel Adaptive Device-Free Passive Indoor Fingerprinting Localization Under Dynamic Environment HSS: A Memory-Efficient, Accurate, and Fast Network Measurement Framework in Sliding Windows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1