Xin Wang;Jianhui Lv;Adam Slowik;B. D. Parameshachari;Keqin Li;Chien-Ming Chen;Saru Kumari
{"title":"DLLF-2EN: Energy-Efficient Next Generation Mobile Network With Deep Learning-Based Load Forecasting","authors":"Xin Wang;Jianhui Lv;Adam Slowik;B. D. Parameshachari;Keqin Li;Chien-Ming Chen;Saru Kumari","doi":"10.1109/TNSM.2024.3445369","DOIUrl":null,"url":null,"abstract":"The exponential growth of mobile data traffic in next generation networks has led to a significant increase in energy consumption, posing critical challenges for network operators. We propose DLLF-2EN, a novel energy-efficient framework that integrates deep learning-based load forecasting, an advanced power consumption model, and a comprehensive energy-saving strategy to address this issue. The load forecasting technique utilizes deep convolutional neural network and long short-term memory model, which is based on deep learning. This model is capable of capturing the spatiotemporal dependencies present in network traffic data. The power consumption model accurately characterizes the base stations’ static and dynamic power consumption components, facilitating the assessment of energy efficiency under various network scenarios. The energy-saving strategy combines base station sleep mode with discontinuous transmission and reception, as well as lightweight transmission of common signals, dynamically adapting the network operation based on the predicted traffic load. Furthermore, DLLF-2EN incorporates an intelligent power management system that leverages machine learning algorithms to continuously monitor the network, analyze collected data, and make optimal energy-saving decisions in real-time. Simulation demonstrate that the superior performance of DLLF-2EN in terms of load forecasting accuracy and energy efficiency compared to state-of-the-art baseline methods. The proposed framework represents a comprehensive solution for energy-efficient and sustainable next generation mobile networks, addressing the critical challenges of minimizing energy consumption while meeting the growing demands for high-quality mobile services.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6515-6526"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10638748/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The exponential growth of mobile data traffic in next generation networks has led to a significant increase in energy consumption, posing critical challenges for network operators. We propose DLLF-2EN, a novel energy-efficient framework that integrates deep learning-based load forecasting, an advanced power consumption model, and a comprehensive energy-saving strategy to address this issue. The load forecasting technique utilizes deep convolutional neural network and long short-term memory model, which is based on deep learning. This model is capable of capturing the spatiotemporal dependencies present in network traffic data. The power consumption model accurately characterizes the base stations’ static and dynamic power consumption components, facilitating the assessment of energy efficiency under various network scenarios. The energy-saving strategy combines base station sleep mode with discontinuous transmission and reception, as well as lightweight transmission of common signals, dynamically adapting the network operation based on the predicted traffic load. Furthermore, DLLF-2EN incorporates an intelligent power management system that leverages machine learning algorithms to continuously monitor the network, analyze collected data, and make optimal energy-saving decisions in real-time. Simulation demonstrate that the superior performance of DLLF-2EN in terms of load forecasting accuracy and energy efficiency compared to state-of-the-art baseline methods. The proposed framework represents a comprehensive solution for energy-efficient and sustainable next generation mobile networks, addressing the critical challenges of minimizing energy consumption while meeting the growing demands for high-quality mobile services.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.