QoE-Driven Cross-Layer Bitrate Allocation Approach for MEC-Supported Adaptive Video Streaming

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Network and Service Management Pub Date : 2024-09-03 DOI:10.1109/TNSM.2024.3453992
Yashar Farzaneh Yeznabad;Markus Helfert;Gabriel-Miro Muntean
{"title":"QoE-Driven Cross-Layer Bitrate Allocation Approach for MEC-Supported Adaptive Video Streaming","authors":"Yashar Farzaneh Yeznabad;Markus Helfert;Gabriel-Miro Muntean","doi":"10.1109/TNSM.2024.3453992","DOIUrl":null,"url":null,"abstract":"The Software-Defined Mobile Network (SDMN), Multi-Access Edge Computing (MEC), Cloud RAN (C-RAN), and Network Slicing are the promising solutions that have been defined for the next generation of the wireless mobile networks in order to fulfill the increasing Quality of Experience (QoE) demand of the mobile users and the Quality of Service (QoS) concerns of high-performance, innovative services. In today’s complex telecommunications network, coupled with continuous traffic growth, and users’ demand for higher speeds, it is vital for mobile operators to allocate their available resources efficiently. This paper focuses on the joint resource allocation problem of delivering adaptive video streams to users located in different slices of a wireless network enabled by MEC, SDMN, and C-RAN technologies. It proposes a novel Cross-Layer QoE-Driven Bitrate Allocation (CLQDBA) algorithm, that aims to improve system utilization by using information from the higher layers regarding traffic patterns and desired video quality of HTTP Adaptive Streaming (HAS) users. The mixed-integer nonlinear program is formulated, taking into account network slice requirements, radio resource limitations, storage and transcoding capacity of MEC servers, and users’ quality of experience. CLQDBA is a low complexity greedy-based algorithm aims to maximize users’ quality of experience (QoE) and minimize the deviation between the achievable throughput at the MAC-layer for users and the value of allocated bit rates for video frames at the application layer. The simulation result shows that compared to the baseline scheme, our introduced algorithm, on average, achieves a 15% higher system utilization, 17% higher video quality, and 13% improvement of Jain’s Fairness index for HAS users.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6857-6874"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663668","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663668/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The Software-Defined Mobile Network (SDMN), Multi-Access Edge Computing (MEC), Cloud RAN (C-RAN), and Network Slicing are the promising solutions that have been defined for the next generation of the wireless mobile networks in order to fulfill the increasing Quality of Experience (QoE) demand of the mobile users and the Quality of Service (QoS) concerns of high-performance, innovative services. In today’s complex telecommunications network, coupled with continuous traffic growth, and users’ demand for higher speeds, it is vital for mobile operators to allocate their available resources efficiently. This paper focuses on the joint resource allocation problem of delivering adaptive video streams to users located in different slices of a wireless network enabled by MEC, SDMN, and C-RAN technologies. It proposes a novel Cross-Layer QoE-Driven Bitrate Allocation (CLQDBA) algorithm, that aims to improve system utilization by using information from the higher layers regarding traffic patterns and desired video quality of HTTP Adaptive Streaming (HAS) users. The mixed-integer nonlinear program is formulated, taking into account network slice requirements, radio resource limitations, storage and transcoding capacity of MEC servers, and users’ quality of experience. CLQDBA is a low complexity greedy-based algorithm aims to maximize users’ quality of experience (QoE) and minimize the deviation between the achievable throughput at the MAC-layer for users and the value of allocated bit rates for video frames at the application layer. The simulation result shows that compared to the baseline scheme, our introduced algorithm, on average, achieves a 15% higher system utilization, 17% higher video quality, and 13% improvement of Jain’s Fairness index for HAS users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持 MEC 的自适应视频流的 QoE 驱动型跨层比特率分配方法
软件定义移动网络(SDMN)、多接入边缘计算(MEC)、云RAN (C-RAN)和网络切片是为下一代无线移动网络定义的有前途的解决方案,以满足移动用户日益增长的体验质量(QoE)需求和高性能创新服务的服务质量(QoS)关注。在当今复杂的电信网络中,随着流量的不断增长和用户对更高速度的需求,移动运营商如何有效地分配其可用资源至关重要。本文重点研究了通过MEC、SDMN和C-RAN技术向位于无线网络不同切片的用户提供自适应视频流的联合资源分配问题。提出了一种新颖的跨层qos驱动比特率分配(CLQDBA)算法,该算法旨在通过利用来自高层的有关HTTP自适应流(HAS)用户的流量模式和所需视频质量的信息来提高系统利用率。考虑到网络切片要求、无线电资源限制、MEC服务器的存储和转码能力以及用户体验质量,制定了混合整数非线性规划。CLQDBA是一种低复杂度的基于贪婪的算法,其目的是最大化用户的体验质量(QoE),最小化用户在mac层可实现的吞吐量与在应用层为视频帧分配的比特率值之间的偏差。仿真结果表明,与基线方案相比,本文算法的系统利用率平均提高了15%,视频质量平均提高了17%,Jain公平性指数平均提高了13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
期刊最新文献
Table of Contents Table of Contents Guest Editors’ Introduction: Special Issue on Robust and Resilient Future Communication Networks A Novel Adaptive Device-Free Passive Indoor Fingerprinting Localization Under Dynamic Environment HSS: A Memory-Efficient, Accurate, and Fast Network Measurement Framework in Sliding Windows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1