Energy Efficient UAV-Assisted IoT Data Collection: A Graph-Based Deep Reinforcement Learning Approach

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Network and Service Management Pub Date : 2024-08-28 DOI:10.1109/TNSM.2024.3450964
Qianqian Wu;Qiang Liu;Wenliang Zhu;Zefan Wu
{"title":"Energy Efficient UAV-Assisted IoT Data Collection: A Graph-Based Deep Reinforcement Learning Approach","authors":"Qianqian Wu;Qiang Liu;Wenliang Zhu;Zefan Wu","doi":"10.1109/TNSM.2024.3450964","DOIUrl":null,"url":null,"abstract":"With the advancements in technologies such as 5G, Unmanned Aerial Vehicles (UAVs) have exhibited their potential in various application scenarios, including wireless coverage, search operations, and disaster response. In this paper, we consider the utilization of a group of UAVs as aerial base stations (BS) to collect data from IoT sensor devices. The objective is to maximize the volume of collected data while simultaneously enhancing the geographical fairness among these points of interest, all within the constraints of limited energy resources. Therefore, we propose a deep reinforcement learning (DRL) method based on Graph Attention Networks (GAT), referred to as “GADRL”. GADRL utilizes graph convolutional neural networks to extract spatial correlations among multiple UAVs and makes decisions in a distributed manner under the guidance of DRL. Furthermore, we employ Long Short-Term Memory to establish memory units for storing and utilizing historical information. Numerical results demonstrate that GADRL consistently outperforms four baseline methods, validating its computational efficiency.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6082-6094"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10654349/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancements in technologies such as 5G, Unmanned Aerial Vehicles (UAVs) have exhibited their potential in various application scenarios, including wireless coverage, search operations, and disaster response. In this paper, we consider the utilization of a group of UAVs as aerial base stations (BS) to collect data from IoT sensor devices. The objective is to maximize the volume of collected data while simultaneously enhancing the geographical fairness among these points of interest, all within the constraints of limited energy resources. Therefore, we propose a deep reinforcement learning (DRL) method based on Graph Attention Networks (GAT), referred to as “GADRL”. GADRL utilizes graph convolutional neural networks to extract spatial correlations among multiple UAVs and makes decisions in a distributed manner under the guidance of DRL. Furthermore, we employ Long Short-Term Memory to establish memory units for storing and utilizing historical information. Numerical results demonstrate that GADRL consistently outperforms four baseline methods, validating its computational efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高能效无人机辅助物联网数据采集:基于图的深度强化学习方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
期刊最新文献
Table of Contents Table of Contents Guest Editors’ Introduction: Special Issue on Robust and Resilient Future Communication Networks A Novel Adaptive Device-Free Passive Indoor Fingerprinting Localization Under Dynamic Environment HSS: A Memory-Efficient, Accurate, and Fast Network Measurement Framework in Sliding Windows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1